Mechanical systems with time-varying topology appear frequently in natural or human-made artificial systems. The nature of topology transitions is a key characteristic in the functioning of such systems. In this paper, we discuss a concept that can offer possibilities to gain insight and analyze topology transitions. This approach relies on the use of impulsive constraints and a formulation that makes it possible to decouple the dynamics at topology change. A key point is an eigenvalue problem that characterizes several aspects of energy and momentum transfer at the discontinuous topology transition.
Issue Section:
Research Papers
1.
Chang
, C. W.
, and Shabana
, A. A.
, 1990, “Spatial Dynamics of Deformable Multibody Systems With Variable Kinematic Structure: Part 1 Dynamic Model, Part 2 Velocity Transformation
,” ASME J. Mech. Des.
0161-8458, 112
, pp. 153
–167
.2.
Nakamura
, Y.
, and Yamane
, K.
, 2000, “Dynamics Computation of Structure-Varying Kinematic Chains and Its Application to Human Figures
,” IEEE Trans. Rob. Autom.
1042-296X, 16
(2
), pp. 124
–134
.3.
Yamane
, K.
, 2004, Simulating and Generating Motions of Human Figures
, Springer
, Berlin
.4.
Hwang
, K. H.
, and Shabana
, A. A.
, 1995, “Effect of Mass Capture on the Propagation of Transverse Waves in Rotating Beams
,” J. Sound Vib.
0022-460X, 186
(3
), pp. 495
–525
.5.
Heppler
, G. R.
, 1993, “On the Dynamic Mass Capture by Flexible Robots
,” Control of Flexible Structures
, A. K.
Morris
, ed., American Mathematical Society
, Providence, RI
, pp. 157
–177
.6.
Pfeiffer
, F.
, and Glocker
, Ch.
, 1996, Multibody Dynamics With Unilateral Contacts
, Wiley
, New York
.7.
Pfeiffer
, F.
, 1999, “Unilateral Problems of Dynamics
,” Arch. Appl. Mech.
0939-1533, 69
, pp. 503
–527
.8.
Brogliato
, B.
, 1999, Nonsmooth Mechanics
, Springer
, London
.9.
Glocker
, Ch.
, 2001, Set-Valued Force Laws: Dynamics of Non-Smooth Systems
, Springer-Verlag
, Berlin
.10.
Wösle
, M.
, and Pfeiffer
, F.
, 1999, “Dynamics of Spatial Structure-Varying Rigid Multibody Systems
,” Arch. Appl. Mech.
0939-1533, 69
, pp. 265
–285
.11.
Pars
, L. A.
, 1964, A Treatise on Analytical Dynamics
, Heinemann
, London
.12.
Pfeiffer
, F.
, 1984, “Mechanische Systeme mit Unstetigen Übergängen
,” Ing.-Arch.
0020-1154, 54
, pp. 232
–240
.13.
Kövecses
, J.
, and Cleghorn
, W. L.
, 2003, “Finite and Impulsive Motion of Constrained Mechanical Systems Via Jourdain’s Principle: Discrete and Hybrid Parameter Models
,” Int. J. Non-Linear Mech.
0020-7462, 38
, pp. 935
–956
.14.
Truesdell
, C.
, 1953, “The Physical Components of Vectors and Tensors
,” ZAMM
0044-2267, 33
(10–11
), pp. 345
–356
.15.
Béda
, G. Y.
, Kozák
, I.
, and Verhás
, J.
, 1989, Continuum Mechanics
, Academic Press
, Budapest
.16.
Blajer
, W.
, 1995, “An Effective Solver for Absolute Variable Formulation of Multibody Dynamics
,” Comput. Mech.
0178-7675, 15
, pp. 460
–472
.17.
Kövecses
, J.
, 2008, “Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation
,” ASME J. Appl. Mech.
0021-8936, 75
, p. 061012
.18.
Modarres Najafabadi
, S. A.
, 2008, “Dynamics Modelling and Analysis of Impact in Multibody Systems
,” Ph.D. thesis, Department of Mechanical Engineering, McGill University, QC, Canada.19.
Bahar
, L. Y.
, 1994, “On the Use of Quasi-Velocities in Impulsive Motion
,” Int. J. Eng. Sci.
0020-7225, 32
(11
), pp. 1669
–1686
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.