Mechanical systems with time-varying topology appear frequently in natural or human-made artificial systems. The nature of topology transitions is a key characteristic in the functioning of such systems. In this paper, we discuss a concept that can offer possibilities to gain insight and analyze topology transitions. This approach relies on the use of impulsive constraints and a formulation that makes it possible to decouple the dynamics at topology change. A key point is an eigenvalue problem that characterizes several aspects of energy and momentum transfer at the discontinuous topology transition.

1.
Chang
,
C. W.
, and
Shabana
,
A. A.
, 1990, “
Spatial Dynamics of Deformable Multibody Systems With Variable Kinematic Structure: Part 1 Dynamic Model, Part 2 Velocity Transformation
,”
ASME J. Mech. Des.
0161-8458,
112
, pp.
153
167
.
2.
Nakamura
,
Y.
, and
Yamane
,
K.
, 2000, “
Dynamics Computation of Structure-Varying Kinematic Chains and Its Application to Human Figures
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
2
), pp.
124
134
.
3.
Yamane
,
K.
, 2004,
Simulating and Generating Motions of Human Figures
,
Springer
,
Berlin
.
4.
Hwang
,
K. H.
, and
Shabana
,
A. A.
, 1995, “
Effect of Mass Capture on the Propagation of Transverse Waves in Rotating Beams
,”
J. Sound Vib.
0022-460X,
186
(
3
), pp.
495
525
.
5.
Heppler
,
G. R.
, 1993, “
On the Dynamic Mass Capture by Flexible Robots
,”
Control of Flexible Structures
,
A. K.
Morris
, ed.,
American Mathematical Society
,
Providence, RI
, pp.
157
177
.
6.
Pfeiffer
,
F.
, and
Glocker
,
Ch.
, 1996,
Multibody Dynamics With Unilateral Contacts
,
Wiley
,
New York
.
7.
Pfeiffer
,
F.
, 1999, “
Unilateral Problems of Dynamics
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
503
527
.
8.
Brogliato
,
B.
, 1999,
Nonsmooth Mechanics
,
Springer
,
London
.
9.
Glocker
,
Ch.
, 2001,
Set-Valued Force Laws: Dynamics of Non-Smooth Systems
,
Springer-Verlag
,
Berlin
.
10.
Wösle
,
M.
, and
Pfeiffer
,
F.
, 1999, “
Dynamics of Spatial Structure-Varying Rigid Multibody Systems
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
265
285
.
11.
Pars
,
L. A.
, 1964,
A Treatise on Analytical Dynamics
,
Heinemann
,
London
.
12.
Pfeiffer
,
F.
, 1984, “
Mechanische Systeme mit Unstetigen Übergängen
,”
Ing.-Arch.
0020-1154,
54
, pp.
232
240
.
13.
Kövecses
,
J.
, and
Cleghorn
,
W. L.
, 2003, “
Finite and Impulsive Motion of Constrained Mechanical Systems Via Jourdain’s Principle: Discrete and Hybrid Parameter Models
,”
Int. J. Non-Linear Mech.
0020-7462,
38
, pp.
935
956
.
14.
Truesdell
,
C.
, 1953, “
The Physical Components of Vectors and Tensors
,”
ZAMM
0044-2267,
33
(
10–11
), pp.
345
356
.
15.
Béda
,
G. Y.
,
Kozák
,
I.
, and
Verhás
,
J.
, 1989,
Continuum Mechanics
,
Academic Press
,
Budapest
.
16.
Blajer
,
W.
, 1995, “
An Effective Solver for Absolute Variable Formulation of Multibody Dynamics
,”
Comput. Mech.
0178-7675,
15
, pp.
460
472
.
17.
Kövecses
,
J.
, 2008, “
Dynamics of Mechanical Systems and the Generalized Free-Body Diagram—Part I: General Formulation
,”
ASME J. Appl. Mech.
0021-8936,
75
, p.
061012
.
18.
Modarres Najafabadi
,
S. A.
, 2008, “
Dynamics Modelling and Analysis of Impact in Multibody Systems
,” Ph.D. thesis, Department of Mechanical Engineering, McGill University, QC, Canada.
19.
Bahar
,
L. Y.
, 1994, “
On the Use of Quasi-Velocities in Impulsive Motion
,”
Int. J. Eng. Sci.
0020-7225,
32
(
11
), pp.
1669
1686
.
You do not currently have access to this content.