In this paper, we introduce a novel concept for parametric studies in multibody dynamics. This includes a technique to perform a natural normalization of the dynamics in terms of inertial parameters. This normalization technique rises out from the underlying physical structure of the system and the trajectory investigated. This structure is mathematically expressed in the form of eigenvalue problems. It leads to the introduction of the concept of dimensionless inertial parameters. This, in turn, makes it possible to introduce an analysis approach for studying design and control problems where parameter estimation and sensitivity are of importance.

1.
Chenut
,
X.
,
Fisette
,
P.
, and
Samin
,
J. C.
, 2002, “
Recursive Formalism With a Minimal Dynamic Parameterization for the Identification and Simulation of Multibody Systems. Application to the Human Body
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
117
140
.
2.
Eberhard
,
P.
,
Schiehlen
,
W.
, and
Sierts
,
J.
, 2007, “
Sensitivity Analysis of Inertia Parameters in Multibody Dynamics
,”
12th IFToMM World Congress
, Besançon, France, Jun. 18–21.
3.
Gautier
,
M.
, 1991, “
Numerical Calculation of the Base Inertial Parameters of Robots
,”
J. Rob. Syst.
0741-2223,
8
, pp.
485
506
.
4.
Khalil
,
W.
, and
Dombre
,
E.
, 2002,
Modeling, Identification and Control of Robots
,
Hermes Penton
,
London
.
5.
Kozlowski
,
K.
, 1998,
Modelling and Identification in Robotics
,
Springer-Verlag
,
London
.
6.
Haug
,
E. J.
,
Wehage
,
R. A.
, and
Barman
,
N. C.
, 1981, “
Design Sensitivity Analysis of Planar Mechanism and Machine Dynamics
,”
ASME J. Mech. Des.
0161-8458,
103
, pp.
560
570
.
7.
Serban
,
R.
, and
Haug
,
E. J.
, 1998, “
Kinematic and Kinetic Derivatives in Multibody System Analysis
,”
Mech. Struct. Mach.
0890-5452,
26
(
2
), pp.
145
173
.
8.
Anderson
,
K. S.
, and
Hsu
,
Y. H.
, 2002, “
Analytical Full-Recursive Sensitivity Analysis for Multibody Chain Systems
,”
Multibody Syst. Dyn.
1384-5640,
8
(
1
), pp.
1
27
.
9.
Armstrong
,
B.
, 1989, “
On Finding Exciting Trajectories for Identification Experiments Involving Systems With Nonlinear Dynamics
,”
Int. J. Robot. Res.
0278-3649,
8
, pp.
28
48
.
10.
Calafiore
,
G.
,
Indri
,
M.
, and
Bona
,
B.
, 2001, “
Robot Dynamic Calibration: Optimal Trajectories and Experimental Parameter Estimation
,”
J. Rob. Syst.
0741-2223,
18
, pp.
55
68
.
11.
Gautier
,
M.
, and
Khalil
,
W.
, 1992, “
Exciting Trajectories for the Identification of Base Inertial Parameters of Robots
,”
Int. J. Robot. Res.
0278-3649,
11
, pp.
362
375
.
12.
Swevers
,
J.
,
Ganseman
,
C.
,
Tukel
,
D. B.
,
Schutter
,
J. D.
, and
Van Brussel
,
H.
, 1997, “
Optimal Robot Excitation and Identification
,”
IEEE Trans. Rob. Autom.
1042-296X,
13
, pp.
730
740
.
13.
Serban
,
R.
, and
Freeman
,
J. S.
, 2001, “
Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems
,”
Multibody Syst. Dyn.
1384-5640,
5
(
4
), pp.
335
350
.
14.
Farhat
,
N.
,
Mata
,
V.
,
Page
,
A.
, and
Valero
,
F.
, 2008, “
Identification of Dynamic Parameters of a 3-DOF RPS Parallel Manipulator
,”
Mech. Mach. Theory
0094-114X,
43
, pp.
1
17
.
15.
Doty
,
K. L.
,
Melchiorri
,
C.
, and
Bonivento
,
C.
, 1993, “
A Theory of Generalized Inverses Applied to Robotics
,”
Int. J. Robot. Res.
0278-3649,
12
(
1
), pp.
1
19
.
16.
Duffy
,
J.
, 1990, “
The Fallacy of Modern Hybrid Control Theory That is Based on Orthogonal Complements of Twist and Wrench Spaces
,”
J. Rob. Syst.
0741-2223,
7
(
2
), pp.
139
144
.
17.
Angeles
,
J.
, 2006, “
Is There a Characteristic Length of a Rigid-Body Displacement?
,”
Mech. Mach. Theory
0094-114X,
41
, pp.
884
896
.
18.
Khan
,
W. A.
, and
Angeles
,
J.
, 2006, “
The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
168
178
.
19.
Swevers
,
J.
, and
Ganseman
,
C.
,
de Schutter
,
J.
, and
van Brussel
,
H.
, 1996, “
Experimental Robot Identification Using Optimised Periodic Trajectories
,”
Mech. Syst. Signal Process.
0888-3270,
10
(
5
), pp.
561
577
.
20.
Meyer
,
C. D.
, 2000,
Matrix Analysis and Applied Linear Algebra
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
21.
Shome
,
S.
,
Beale
,
D. G.
, and
Wang
,
D.
, 1998, “
A General Method for Estimating Dynamic Parameters of Spatial Mechanisms
,”
Nonlinear Dyn.
0924-090X,
16
, pp.
349
368
.
22.
Sheu
,
S. Y.
, and
Walker
,
M. W.
, 1991, “
Identifying the Independent Inertial Parameter Space of Robot Manipulators
,”
Int. J. Robot. Res.
0278-3649,
10
, pp.
668
683
.
You do not currently have access to this content.