In this paper, we introduce a novel concept for parametric studies in multibody dynamics. This includes a technique to perform a natural normalization of the dynamics in terms of inertial parameters. This normalization technique rises out from the underlying physical structure of the system and the trajectory investigated. This structure is mathematically expressed in the form of eigenvalue problems. It leads to the introduction of the concept of dimensionless inertial parameters. This, in turn, makes it possible to introduce an analysis approach for studying design and control problems where parameter estimation and sensitivity are of importance.
Issue Section:
Research Papers
1.
Chenut
, X.
, Fisette
, P.
, and Samin
, J. C.
, 2002, “Recursive Formalism With a Minimal Dynamic Parameterization for the Identification and Simulation of Multibody Systems. Application to the Human Body
,” Multibody Syst. Dyn.
1384-5640, 8
, pp. 117
–140
.2.
Eberhard
, P.
, Schiehlen
, W.
, and Sierts
, J.
, 2007, “Sensitivity Analysis of Inertia Parameters in Multibody Dynamics
,” 12th IFToMM World Congress
, Besançon, France, Jun. 18–21.3.
Gautier
, M.
, 1991, “Numerical Calculation of the Base Inertial Parameters of Robots
,” J. Rob. Syst.
0741-2223, 8
, pp. 485
–506
.4.
Khalil
, W.
, and Dombre
, E.
, 2002, Modeling, Identification and Control of Robots
, Hermes Penton
, London
.5.
Kozlowski
, K.
, 1998, Modelling and Identification in Robotics
, Springer-Verlag
, London
.6.
Haug
, E. J.
, Wehage
, R. A.
, and Barman
, N. C.
, 1981, “Design Sensitivity Analysis of Planar Mechanism and Machine Dynamics
,” ASME J. Mech. Des.
0161-8458, 103
, pp. 560
–570
.7.
Serban
, R.
, and Haug
, E. J.
, 1998, “Kinematic and Kinetic Derivatives in Multibody System Analysis
,” Mech. Struct. Mach.
0890-5452, 26
(2
), pp. 145
–173
.8.
Anderson
, K. S.
, and Hsu
, Y. H.
, 2002, “Analytical Full-Recursive Sensitivity Analysis for Multibody Chain Systems
,” Multibody Syst. Dyn.
1384-5640, 8
(1
), pp. 1
–27
.9.
Armstrong
, B.
, 1989, “On Finding Exciting Trajectories for Identification Experiments Involving Systems With Nonlinear Dynamics
,” Int. J. Robot. Res.
0278-3649, 8
, pp. 28
–48
.10.
Calafiore
, G.
, Indri
, M.
, and Bona
, B.
, 2001, “Robot Dynamic Calibration: Optimal Trajectories and Experimental Parameter Estimation
,” J. Rob. Syst.
0741-2223, 18
, pp. 55
–68
.11.
Gautier
, M.
, and Khalil
, W.
, 1992, “Exciting Trajectories for the Identification of Base Inertial Parameters of Robots
,” Int. J. Robot. Res.
0278-3649, 11
, pp. 362
–375
.12.
Swevers
, J.
, Ganseman
, C.
, Tukel
, D. B.
, Schutter
, J. D.
, and Van Brussel
, H.
, 1997, “Optimal Robot Excitation and Identification
,” IEEE Trans. Rob. Autom.
1042-296X, 13
, pp. 730
–740
.13.
Serban
, R.
, and Freeman
, J. S.
, 2001, “Identification and Identifiability of Unknown Parameters in Multibody Dynamic Systems
,” Multibody Syst. Dyn.
1384-5640, 5
(4
), pp. 335
–350
.14.
Farhat
, N.
, Mata
, V.
, Page
, A.
, and Valero
, F.
, 2008, “Identification of Dynamic Parameters of a 3-DOF RPS Parallel Manipulator
,” Mech. Mach. Theory
0094-114X, 43
, pp. 1
–17
.15.
Doty
, K. L.
, Melchiorri
, C.
, and Bonivento
, C.
, 1993, “A Theory of Generalized Inverses Applied to Robotics
,” Int. J. Robot. Res.
0278-3649, 12
(1
), pp. 1
–19
.16.
Duffy
, J.
, 1990, “The Fallacy of Modern Hybrid Control Theory That is Based on Orthogonal Complements of Twist and Wrench Spaces
,” J. Rob. Syst.
0741-2223, 7
(2
), pp. 139
–144
.17.
Angeles
, J.
, 2006, “Is There a Characteristic Length of a Rigid-Body Displacement?
,” Mech. Mach. Theory
0094-114X, 41
, pp. 884
–896
.18.
Khan
, W. A.
, and Angeles
, J.
, 2006, “The Kinetostatic Optimization of Robotic Manipulators: The Inverse and the Direct Problems
,” ASME J. Mech. Des.
0161-8458, 128
, pp. 168
–178
.19.
Swevers
, J.
, and Ganseman
, C.
, de Schutter
, J.
, and van Brussel
, H.
, 1996, “Experimental Robot Identification Using Optimised Periodic Trajectories
,” Mech. Syst. Signal Process.
0888-3270, 10
(5
), pp. 561
–577
.20.
Meyer
, C. D.
, 2000, Matrix Analysis and Applied Linear Algebra
, Society for Industrial and Applied Mathematics
, Philadelphia, PA
.21.
Shome
, S.
, Beale
, D. G.
, and Wang
, D.
, 1998, “A General Method for Estimating Dynamic Parameters of Spatial Mechanisms
,” Nonlinear Dyn.
0924-090X, 16
, pp. 349
–368
.22.
Sheu
, S. Y.
, and Walker
, M. W.
, 1991, “Identifying the Independent Inertial Parameter Space of Robot Manipulators
,” Int. J. Robot. Res.
0278-3649, 10
, pp. 668
–683
.Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.