In this investigation, a gradient deficient beam element of the absolute nodal coordinate formulation is generalized to a curved beam for the analysis of multibody systems, and the performance of the proposed element is discussed by comparing with the fully parametrized curved beam element and the classical large displacement beam element with incremental solution procedures. Strain components are defined with respect to the initially curved configuration and described by the arc-length coordinate. The Green strain is used for the longitudinal stretch, while the material measure of curvature is used for bending. It is shown that strains of the curved beam can be expressed with respect to those defined in the element coordinate system using the gradient transformation, and the effect of strains at the initially curved configuration is eliminated using one-dimensional Almansi strain. This property can be effectively used with a nonincremental solution procedure employed for the absolute nodal coordinate formulation. Several numerical examples are presented in order to demonstrate the performance of the gradient deficient curved beam element developed in this investigation. It is shown that the use of the proposed element leads to better element convergence as compared with the fully parametrized element and the classical large displacement beam element with incremental solution procedures.

1.
Shabana
,
A. A.
, and
Yakoub
,
R. Y.
, 2001, “
Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory
,”
ASME J. Mech. Des.
0161-8458,
123
, pp.
606
613
.
2.
Omar
,
M. A.
, and
Shabana
,
A. A.
, 2001, “
A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems
,”
J. Sound Vib.
0022-460X,
243
, pp.
565
576
.
3.
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2003, “
Description of Elastic Forces in Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
34
, pp.
53
74
.
4.
Dufva
,
K. E.
,
Sopanen
,
J. T.
, and
Mikkola
,
A. M.
, 2005, “
A Two-Dimensional Shear Deformable Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
0022-460X,
280
, pp.
719
738
.
5.
García-Vallejo
,
D.
,
Mikkola
,
A. M.
, and
Escalona
,
J. L.
, 2007, “
A New Locking-Free Shear Deformable Finite Element Based on Absolute Nodal Coordinates
,”
Nonlinear Dyn.
0924-090X,
50
, pp.
249
264
.
6.
Sugiyama
,
H.
, and
Suda
,
Y.
, 2007, “
A Curved Beam Element in the Analysis of Flexible Multibody Systems Using the Absolute Nodal Coordinates
,”
IMechE Journal of Multi-Body Dynamics
1464-4193,
221
, pp.
219
231
.
7.
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, “
Development of Simple Models for the Elastic Forces in the Absolute Nodal Co-Ordinate Formulation
,”
J. Sound Vib.
0022-460X,
235
(
4
), pp.
539
565
.
8.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
, 2003, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
1384-5640,
10
, pp.
17
43
.
9.
Dufva
,
K. E.
,
Kerkkänen
,
K. S.
,
Maqueda
,
L. G.
, and
Shabana
,
A. A.
, 2007, “
Nonlinear Dynamics of Three-Dimensional Belt Drives Using the Finite-Element Method
,”
Nonlinear Dyn.
0924-090X,
48
, pp.
449
466
.
10.
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Analysis of Thin Beams and Cables Using the Absolute Nodal Co-Ordinate Formulation
,”
Nonlinear Dyn.
0924-090X,
45
, pp.
109
130
.
11.
García-Vallejo
,
D.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
, 2005, “
Finite Element Analysis of the Geometric Stiffening Effect: Nonlinear Elasticity
,”
IMechE Journal of Multi-Body Dynamics
1464-4193,
219
, pp.
203
211
. 0002-7820
12.
Mikkola
,
A.
,
Dmitrochenko
,
O.
, and
Matikainen
,
M.
, 2009, “
Inclusion of Transverse Shear Deformation in a Beam Element Based on the Absolute Nodal Coordinate Formulation
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
, pp.
1
9
.
13.
Gerstmayr
,
J.
, and
Irschik
,
H.
, 2008, “
On the Correct Representation of Bending and Axial Deformation in the Absolute Nodal Coordinate Formulation With an Elastic Line Approach
,”
J. Sound Vib.
0022-460X,
318
, pp.
461
487
.
14.
Shabana
,
A. A.
, and
Maqueda
,
L. G.
, 2008, “
Slope Discontinuities in the Finite Element Absolute Nodal Coordinate Formulation: Gradient Deficient Elements
,”
Multibody Syst. Dyn.
1384-5640,
20
, pp.
239
249
.
15.
Sugiyama
,
H.
,
Gerstmayr
,
J.
, and
Shabana
,
A. A.
, 2006, “
Deformation Modes in the Finite Element Absolute Nodal Coordinate Formulation
,”
J. Sound Vib.
0022-460X,
298
, pp.
1129
1149
.
16.
Schwab
,
A. L.
, and
Meijaard
,
J. P.
, 2005, “
Comparison of Three-Dimensional Flexible Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference
, Long Beach, CA, Paper No. DETC2005-85104.
17.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
, 1986, “
Three-Dimensional Finite-Strain Rod Model. Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
58
, pp.
79
116
.
18.
Blevins
,
R. D.
, 1984,
Formulas for Natural Frequency and Mode Shape
,
R.E. Krieger
,
Malabar, FL
.
19.
2008,
Theory Reference for ANSYS and ANSYS Workbench
,
ANSYS, Inc.
,
Canonsburg, PA
.
20.
Campanelli
,
M.
,
Berzeri
,
M.
, and
Shabana
,
A. A.
, 2000, “
Performance of the Incremental and Non-Incremental Finite Element Formulations in Flexible Multibody Problems
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
498
507
.
21.
Hussein
,
B. A.
,
Sugiyama
,
H.
, and
Shabana
,
A. A.
, 2007, “
Coupled Deformation Modes in the Large Deformation Finite-Element Analysis: Problem Definition
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
, pp.
146
154
.
You do not currently have access to this content.