This paper considers a nonlinear dynamics of a particular structure coupled (or uncoupled) to an essentially nonlinear oscillator. We used an optimal linear control design to reduce the amplitude of oscillations and to expand energy consumption, for both ideal and nonideal mathematical models.

1.
Balthazar
,
J. M.
,
Mook
,
D. T.
,
Weber
,
H. I.
,
Brasil
,
R. M. L. R. F.
,
Fenili
,
A.
,
Belato
,
D.
, and
Felix
,
J. L. P.
, 2003, “
An Overview on Non-Ideal Vibrations
,”
Meccanica
0025-6455,
38
, pp.
613
621
.
2.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Closkey
,
R. M.
, 2001, “
Energy Pumping in Nonlinear Mechanical Oscillators, Part I: Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
), pp.
34
42
.
3.
Gendelman
,
O. V.
, 2001, “
Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,”
Nonlinear Dyn.
0924-090X,
25
, pp.
237
253
.
4.
Gendelman
,
O. V.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L.
, 2003, “
A Degenerate Bifurcation Structure in the Dynamics of Coupled Oscillators With Essential Stiffness Nonlineartities
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
1
10
.
5.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Gendelman
,
O.
, and
Bergman
,
L.
, 2003, “
Dynamics of Linear Discrete Systems Connected to Local, Essentially Non-Linear Attachments
,”
J. Sound Vib.
0022-460X,
264
, pp.
559
577
.
6.
Malatkar
,
P.
, and
Nayfeh
,
A. H.
, 2007, “
Steady-State Dynamics of a Linear Structure Weakly Coupled to an Essentially Nonlinear Oscillator
,”
Nonlinear Dyn.
0924-090X,
47
, pp.
167
179
.
7.
Jiang
,
X.
,
Mcfarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A.
, 2003, “
Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,”
Nonlinear Dyn.
0924-090X,
33
, pp.
87
102
.
8.
Vakakis
,
A. F.
, 2001, “
Inducing Passive Nonlinear Energy Sinks in Linear Vibrating Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
3
), pp.
324
332
.
9.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
, 2007, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
0022-460X,
300
(
3–5
), pp.
522
551
.
10.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
, 2008, “
Dynamics of a Strongly Nonlinear Vibration Absorber Coupled to a Harmonically Excited Two-Degree-of Freedom System
,”
J. Sound Vib.
0022-460X,
312
, pp.
234
256
.
11.
Starosvetsky
,
Y.
, and
Gendelman
,
O. V.
, 2008, “
Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry
,”
Physica D
0167-2789,
237
, pp.
1719
1733
.
12.
Dantas
,
M. J. H.
, and
Balthazar
,
J. M.
, 2008, “
On Energy Transfer Between Linear and Non-Linear Oscillator
,”
J. Sound Vib.
0022-460X,
315
, pp.
1047
1070
.
13.
Costa
,
S. N. J.
,
Hassmann
,
C. H. G.
,
Balthazar
,
J. M.
, and
Dantas
,
M. J. H.
, 2009, “
On Energy Transfer Between Vibrating Systems Under Linear and Nonlinear Interactions
,”
Nonlinear Dyn.
0924-090X,
57
, pp.
57
67
.
14.
Felix
,
J. L. P.
,
Balthazar
,
J. M.
, and
Dantas
,
M. J. H.
, 2009, “
On Energy Pumping, Synchronization and Beat Phenomenon in a Non-Ideal Structure Coupled to an Essentially Nonlinear Oscillator
,”
Nonlinear Dyn.
0924-090X,
56
(
1–2
), pp.
1
11
.
15.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
, 1990, “
Controlling Chaos
,”
Phys. Rev. Lett.
0031-9007,
64
, pp.
1196
1199
.
16.
Sinha
,
S. C.
,
Henrichs
,
J. T.
, and
Ravindra
,
B. A.
, 2000, “
A General Approach in the Design of Active Controllers for Nonlinear Systems Exhibiting Chaos
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
10
(
1
), pp.
165
178
.
17.
Peruzzi
,
N.
,
Balthazar
,
J. M.
,
Pontes
,
B. R.
, and
Brasil
,
R. M. L. R. F.
, 2007, “
Nonlinear Dynamics and Control of an Ideal/Nonideal Load Transportation System With Periodic Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
2
, pp.
32
39
.
18.
Rafikov
,
M.
, and
Balthazar
,
J. M.
, 2005, “
Optimal Linear and Nonlinear Control Design for Chaotic Systems
,” ASME Paper No. DETC2005-84998.
19.
Rafikov
,
M.
, and
Balthazar
,
J. M.
, 2008, “
On Control and Synchronization in Chaotic and Hyperchaotic System via Linear Control Feedback
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
13
, pp.
1246
1255
.
20.
Pereira
,
D. C.
,
Balthazar
,
J. M.
,
Chavaretee
,
F. R.
, and
Rafikov
,
M.
, 2008, “
On Nonlinear Dynamics and an Optimal Control Design to a Longitudinal Flight
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
, p.
011012
.
21.
Piccirillo
,
V.
,
Balthazar
,
J. M.
,
Pontes
,
B. R.
, Jr.
, and
Felix
,
J. L. P.
, 2009, “
Chaos Control of a Nonlinear Oscillator With Shape Memory Alloy Using an Optimal Linear Control: Part I: Ideal Energy Source
,”
Nonlinear Dyn.
0924-090X,
55
(
1–2
), pp.
139
149
.
22.
Piccirillo
,
V.
,
Balthazar
,
J. M.
,
Pontes
,
B. R.
, Jr.
, and
Felix
,
J. L. P.
, 2009, “
Chaos Control of a Nonlinear Oscillator With Shape Memory Alloy Using an Optimal Linear Control: Part II: Nonideal Energy Source
,”
Nonlinear Dyn.
0924-090X,
56
(
3
), pp.
243
253
.
23.
Chavarette
,
F. R.
,
Balthazar
,
J. M.
,
Rafikov
,
M.
, and
Hermini
,
H. A.
, 2009, “
On Non-Linear Dynamics and an Optimal Control Synthesis of the Action Potential of Membranes (Ideal and Non-Ideal Cases) of the Hodgkin–Huxley (HH) Mathematical Model
,”
Chaos, Solitons Fractals
0960-0779,
39
(
4
), pp.
1651
1666
.
24.
Chavarette
,
F. R.
,
Balthazar
,
J. M.
,
Rafikov
,
M.
, and
Felix
,
J. L. P.
, 2009, “
A Reducing of a Chaotic Movement to a Periodic Orbit, of a Micro-Electro-Mechanical System, by Using an Optimal Linear Control Design
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
5
), pp.
1844
1853
.
25.
Chavarette
,
F. R.
,
Balthazar
,
J. M.
,
Peruzzi
,
N. J.
, and
Rafikov
,
M.
, 2009, “
On Non-Linear Dynamics and Control Designs Applied to the Ideal and Non-Ideal Variants of the Fitzhugh–Nagumo (FN) Mathematical Model
,”
Commun. Nonlinear Sci. Numer. Simul.
1007-5704,
14
(
3
), pp.
892
905
.
26.
Costa
,
S. N. J.
, and
Balthazar
,
J. M.
, 2009, “
On an Active Control for a Structurally Nonlinear Mechanical System, Taking Into Account an Energy Pumping
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
3
), pp.
31005
31010
.
27.
Gourdon
,
E.
, and
Lamarque
,
C. H.
, 2005, “
Energy Pumping for a Larger Span of Energy
,”
J. Sound Vib.
0022-460X,
285
, pp.
711
720
.
28.
Gourdon
,
E.
, and
Lamarque
,
C. H.
, 2005, “
Energy Pumping With Various Nonlinear Structures: Numerical Evidences
,”
Nonlinear Dyn.
0924-090X,
40
, pp.
281
307
.
You do not currently have access to this content.