This paper considers a nonlinear dynamics of a particular structure coupled (or uncoupled) to an essentially nonlinear oscillator. We used an optimal linear control design to reduce the amplitude of oscillations and to expand energy consumption, for both ideal and nonideal mathematical models.
1.
Balthazar
, J. M.
, Mook
, D. T.
, Weber
, H. I.
, Brasil
, R. M. L. R. F.
, Fenili
, A.
, Belato
, D.
, and Felix
, J. L. P.
, 2003, “An Overview on Non-Ideal Vibrations
,” Meccanica
0025-6455, 38
, pp. 613
–621
.2.
Gendelman
, O.
, Manevitch
, L. I.
, Vakakis
, A. F.
, and Closkey
, R. M.
, 2001, “Energy Pumping in Nonlinear Mechanical Oscillators, Part I: Dynamics of the Underlying Hamiltonian Systems
,” ASME J. Appl. Mech.
0021-8936, 68
(1
), pp. 34
–42
.3.
Gendelman
, O. V.
, 2001, “Transition of Energy to a Nonlinear Localized Mode in a Highly Asymmetric System of Two Oscillators
,” Nonlinear Dyn.
0924-090X, 25
, pp. 237
–253
.4.
Gendelman
, O. V.
, Manevitch
, L. I.
, Vakakis
, A. F.
, and Bergman
, L.
, 2003, “A Degenerate Bifurcation Structure in the Dynamics of Coupled Oscillators With Essential Stiffness Nonlineartities
,” Nonlinear Dyn.
0924-090X, 33
, pp. 1
–10
.5.
Vakakis
, A. F.
, Manevitch
, L. I.
, Gendelman
, O.
, and Bergman
, L.
, 2003, “Dynamics of Linear Discrete Systems Connected to Local, Essentially Non-Linear Attachments
,” J. Sound Vib.
0022-460X, 264
, pp. 559
–577
.6.
Malatkar
, P.
, and Nayfeh
, A. H.
, 2007, “Steady-State Dynamics of a Linear Structure Weakly Coupled to an Essentially Nonlinear Oscillator
,” Nonlinear Dyn.
0924-090X, 47
, pp. 167
–179
.7.
Jiang
, X.
, Mcfarland
, D. M.
, Bergman
, L. A.
, and Vakakis
, A.
, 2003, “Steady State Passive Nonlinear Energy Pumping in Coupled Oscillators: Theoretical and Experimental Results
,” Nonlinear Dyn.
0924-090X, 33
, pp. 87
–102
.8.
Vakakis
, A. F.
, 2001, “Inducing Passive Nonlinear Energy Sinks in Linear Vibrating Systems
,” ASME J. Vibr. Acoust.
0739-3717, 123
(3
), pp. 324
–332
.9.
Gourdon
, E.
, Alexander
, N. A.
, Taylor
, C. A.
, Lamarque
, C. H.
, and Pernot
, S.
, 2007, “Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,” J. Sound Vib.
0022-460X, 300
(3–5
), pp. 522
–551
.10.
Starosvetsky
, Y.
, and Gendelman
, O. V.
, 2008, “Dynamics of a Strongly Nonlinear Vibration Absorber Coupled to a Harmonically Excited Two-Degree-of Freedom System
,” J. Sound Vib.
0022-460X, 312
, pp. 234
–256
.11.
Starosvetsky
, Y.
, and Gendelman
, O. V.
, 2008, “Strongly Modulated Response in Forced 2DOF Oscillatory System With Essential Mass and Potential Asymmetry
,” Physica D
0167-2789, 237
, pp. 1719
–1733
.12.
Dantas
, M. J. H.
, and Balthazar
, J. M.
, 2008, “On Energy Transfer Between Linear and Non-Linear Oscillator
,” J. Sound Vib.
0022-460X, 315
, pp. 1047
–1070
.13.
Costa
, S. N. J.
, Hassmann
, C. H. G.
, Balthazar
, J. M.
, and Dantas
, M. J. H.
, 2009, “On Energy Transfer Between Vibrating Systems Under Linear and Nonlinear Interactions
,” Nonlinear Dyn.
0924-090X, 57
, pp. 57
–67
.14.
Felix
, J. L. P.
, Balthazar
, J. M.
, and Dantas
, M. J. H.
, 2009, “On Energy Pumping, Synchronization and Beat Phenomenon in a Non-Ideal Structure Coupled to an Essentially Nonlinear Oscillator
,” Nonlinear Dyn.
0924-090X, 56
(1–2
), pp. 1
–11
.15.
Ott
, E.
, Grebogi
, C.
, and Yorke
, J. A.
, 1990, “Controlling Chaos
,” Phys. Rev. Lett.
0031-9007, 64
, pp. 1196
–1199
.16.
Sinha
, S. C.
, Henrichs
, J. T.
, and Ravindra
, B. A.
, 2000, “A General Approach in the Design of Active Controllers for Nonlinear Systems Exhibiting Chaos
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274, 10
(1
), pp. 165
–178
.17.
Peruzzi
, N.
, Balthazar
, J. M.
, Pontes
, B. R.
, and Brasil
, R. M. L. R. F.
, 2007, “Nonlinear Dynamics and Control of an Ideal/Nonideal Load Transportation System With Periodic Coefficients
,” ASME J. Comput. Nonlinear Dyn.
1555-1423, 2
, pp. 32
–39
.18.
Rafikov
, M.
, and Balthazar
, J. M.
, 2005, “Optimal Linear and Nonlinear Control Design for Chaotic Systems
,” ASME Paper No. DETC2005-84998.19.
Rafikov
, M.
, and Balthazar
, J. M.
, 2008, “On Control and Synchronization in Chaotic and Hyperchaotic System via Linear Control Feedback
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 13
, pp. 1246
–1255
.20.
Pereira
, D. C.
, Balthazar
, J. M.
, Chavaretee
, F. R.
, and Rafikov
, M.
, 2008, “On Nonlinear Dynamics and an Optimal Control Design to a Longitudinal Flight
,” ASME J. Comput. Nonlinear Dyn.
1555-1423, 3
, p. 011012
.21.
Piccirillo
, V.
, Balthazar
, J. M.
, Pontes
, B. R.
, Jr., and Felix
, J. L. P.
, 2009, “Chaos Control of a Nonlinear Oscillator With Shape Memory Alloy Using an Optimal Linear Control: Part I: Ideal Energy Source
,” Nonlinear Dyn.
0924-090X, 55
(1–2
), pp. 139
–149
.22.
Piccirillo
, V.
, Balthazar
, J. M.
, Pontes
, B. R.
, Jr., and Felix
, J. L. P.
, 2009, “Chaos Control of a Nonlinear Oscillator With Shape Memory Alloy Using an Optimal Linear Control: Part II: Nonideal Energy Source
,” Nonlinear Dyn.
0924-090X, 56
(3
), pp. 243
–253
.23.
Chavarette
, F. R.
, Balthazar
, J. M.
, Rafikov
, M.
, and Hermini
, H. A.
, 2009, “On Non-Linear Dynamics and an Optimal Control Synthesis of the Action Potential of Membranes (Ideal and Non-Ideal Cases) of the Hodgkin–Huxley (HH) Mathematical Model
,” Chaos, Solitons Fractals
0960-0779, 39
(4
), pp. 1651
–1666
.24.
Chavarette
, F. R.
, Balthazar
, J. M.
, Rafikov
, M.
, and Felix
, J. L. P.
, 2009, “A Reducing of a Chaotic Movement to a Periodic Orbit, of a Micro-Electro-Mechanical System, by Using an Optimal Linear Control Design
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 14
(5
), pp. 1844
–1853
.25.
Chavarette
, F. R.
, Balthazar
, J. M.
, Peruzzi
, N. J.
, and Rafikov
, M.
, 2009, “On Non-Linear Dynamics and Control Designs Applied to the Ideal and Non-Ideal Variants of the Fitzhugh–Nagumo (FN) Mathematical Model
,” Commun. Nonlinear Sci. Numer. Simul.
1007-5704, 14
(3
), pp. 892
–905
.26.
Costa
, S. N. J.
, and Balthazar
, J. M.
, 2009, “On an Active Control for a Structurally Nonlinear Mechanical System, Taking Into Account an Energy Pumping
,” ASME J. Comput. Nonlinear Dyn.
1555-1423, 4
(3
), pp. 31005
–31010
.27.
Gourdon
, E.
, and Lamarque
, C. H.
, 2005, “Energy Pumping for a Larger Span of Energy
,” J. Sound Vib.
0022-460X, 285
, pp. 711
–720
.28.
Gourdon
, E.
, and Lamarque
, C. H.
, 2005, “Energy Pumping With Various Nonlinear Structures: Numerical Evidences
,” Nonlinear Dyn.
0924-090X, 40
, pp. 281
–307
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.