Iterative learning control (ILC) is a simple and effective technique of tracking control aiming at improving system tracking performance from trial to trial in a repetitive mode. In this paper, we propose a new ILC called switching gain PD-PD (SPD-PD)-type ILC for trajectory tracking control of time-varying nonlinear systems with uncertainty and disturbance. In the developed control scheme, a PD feedback control with switching gains in the iteration domain and a PD-type ILC based on the previous iteration combine together into one updating law. The proposed SPD-PD ILC takes the advantages of feedback control and classical ILC and can also be viewed as online-offline ILC. It is theoretically proven that the boundednesses of the state error and the final tracking error are guaranteed in the presence of uncertainty, disturbance, and initialization error of the nonlinear systems. The convergence rate is adjustable by the adoption of the switching gains in the iteration domain. Simulation experiments are conducted for trajectory tracking control of a nonlinear system and a robotic system. The results show that fast convergence and small tracking error bounds can be observed by using the SPD-PD-type ILC.

1.
Arimoto
,
S.
,
Kawamura
,
S.
, and
Miyazaki
,
F.
, 1984, “
Bettering Operation of Robots by Learning
,”
J. Rob. Syst.
0741-2223,
1
(
2
), pp.
123
140
.
2.
Longman
,
R. W.
, 2000, “
Iterative Learning Control and Repetitive Control for Engineering Practice
,”
Int. J. Control
0020-7179,
73
(
10
), pp.
930
954
.
3.
Xu
,
J. X.
,
Lee
,
T. H.
, and
Zhang
,
H. W.
, 2004, “
Analysis and Comparison of Iterative Learning Control Schemes
,”
Eng. Applic. Artif. Intell.
0952-1976,
17
(
6
), pp.
675
686
.
4.
Yan
,
X. G.
,
Chen
,
I. M.
, and
Lam
,
J.
, 2001, “
D-Type Learning Control for Nnonlinear Time-Varying Systems With Unknown Initial States and Inputs
,”
Trans. Inst. Meas. Control (London)
0142-3312,
23
(
2
), pp.
69
82
.
5.
Song
,
Z. Q.
,
Mao
,
J. Q.
, and
Dai
,
S. W.
, 2005, “
First-Order D-Type Iterative Learning Control for Nonlinear Systems With Unknown Relative Degree
,”
Acta Automatica Sin.
,
31
(
4
), pp.
555
561
.
6.
Chen
,
Y. Q.
, and
Moore
,
K. L.
, 2002, “
An Optimal Design of PD-Type Iterative Learning Control With Monotonic Convergence
,”
Proceedings of IEEE International Symposium on Intelligent Control
, pp.
55
60
.
7.
Zhang
,
B.
,
Tang
,
G.
, and
Zheng
,
S.
, 2006, “
PD-Type Iterative Learning Ccontrol for Nonlinear Time-Delay System With Extern Disturbance
,”
J. Syst. Eng. Electron.
,
17
(
3
), pp.
600
605
.
8.
Park
,
K. H.
,
Bien
,
Z.
, and
Hwang
,
D. H.
, 1999, “
A Study on the Robustness of a PID-Type Iterative Learning Controller Against Initial State Error
,”
Int. J. Syst. Sci.
0020-7721,
30
(
1
), pp.
49
59
.
9.
Madady
,
A.
, 2008, “
PID Type Iterative Learning Control With Optimal Gains
,”
International Journal of Control, Automation, and Systems
,
6
(
2
), pp.
194
203
.
10.
Park
,
K. H.
, 2005, “
An Average Operator-Based PD-Type Iterative Learning Control for Variable Initial State Error
,”
IEEE Trans. Autom. Control
0018-9286,
50
(
6
), pp.
865
869
.
11.
Moore
,
K. L.
,
Dahleh
,
M.
, and
Bhattacharyya
,
S. P.
, 1992, “
Iterative Learning Control: A Survey and New Results
,”
J. Rob. Syst.
0741-2223,
9
(
5
), pp.
563
594
.
12.
Bristow
,
D. A.
,
Tharayil
,
M.
, and
Alleyne
,
A. G.
, 2006, “
A Survey of Iterative Learning Control: A Learning-Based Method for High-Performance Tracking Control
,”
IEEE Control Syst. Mag.
0272-1708,
26
(
3
), pp.
96
114
.
13.
Ahn
,
H. S.
,
Chen
,
Y. Q.
, and
Moore
,
K. L.
, 2007, “
Iterative Learning Control: Brief Survey and Categorization
,”
IEEE Trans. Syst. Man Cybern., Part C Appl. Rev.
1094-6977,
37
(
6
), pp.
1099
1121
.
14.
Sun
,
M.
, and
Wang
,
D.
, 2002, “
Closed-Loop Iterative Learning Control for Nonlinear Systems With Initial Shifts
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
16
(
7
), pp.
515
538
.
15.
Xu
,
J. X.
,
Wang
,
X. W.
, and
Heng
,
L. T.
, 1995, “
Analysis of Continuous Iterative Learning Control Systems Using Current Cycle Feedback
,”
Proceedings of the American Control Conference
, pp.
4221
4225
.
16.
Owens
,
D. H.
, and
Munde
,
G. S.
, 1998, “
Universal Adaptive Iterative Learning Control
,”
Proceedings of the 37th IEEE Conference on Decision and Control
, pp.
181
185
.
17.
Amann
,
N.
,
Owens
,
D. H.
, and
Rogers
,
E.
, 1995, “
Iterative Learning Control for Discrete Time Systems Using Optimal Feedback and Feedforward Actions
,”
Proceedings of the 34th Conference on Decision and Control
, pp.
1696
1701
.
18.
Ouyang
,
P. R.
,
Zhang
,
W. J.
, and
Gupta
,
M. M.
, 2007, “
PD-Type On-Line Learning Control for Nonlinear System With Uncertainty and Disturbance
,”
Control Intell. Syst.
1480-1752,
35
(
6
), pp.
351
358
.
19.
Ouyang
,
P. R.
,
Zhang
,
W. J.
, and
Gupta
,
M. M.
, 2006, “
An Adaptive Switching Learning Control Method for Trajectory Tracking of Robot Manipulators
,”
Mechatronics
0957-4158,
16
(
1
), pp.
51
61
.
20.
Qu
,
Z. H.
,
Dorsey
,
J.
,
Dawson
,
M.
, and
Johnson
,
R. W.
, 1991, “
A New Learning Control Scheme for Robots
,”
Proceedings of the 1991 IEEE ICRA
, pp.
1463
1468
.
21.
Cai
,
Z.
,
Freeman
,
C. T.
,
Lewin
,
P. L.
, and
Rogers
,
E.
, 2008, “
Experimental Comparison of Stochastic Iterative Learning Control
,”
Proceedings of the American Control Conference
, pp.
4548
4553
.
22.
Doh
,
T. Y.
,
Moon
,
J. H.
,
Jin
,
K. B.
, and
Chung
,
M. J.
, 1999, “
Robust Iterative Learning Ccontrol With Current Feedback for Uncertain Linear Systems
,”
Int. J. Syst. Sci.
0020-7721,
30
(
1
), pp.
39
47
.
23.
Norrlöf
,
M.
, and
Gunnarsson
,
S.
, 2005, “
A Note on Causal and CITE Iterative Learning Control Algorithms
,”
Automatica
0005-1098,
41
(
2
), pp.
345
350
.
24.
Pi
,
D. Y.
,
Seborg
,
S.
,
Shou
,
J.
,
Sun
,
Y.
, and
Lin
,
Q.
, 2000, “
Analysis of Current Cycle Error Assisted Iterative Learning Control for Discrete Nonlinear Time-Varying Systems
,”
IEEE International Conference on Systems, Man, and Cybernetics
,
5
, pp.
3508
3513
.
25.
Kang
,
M. K.
,
Lee
,
J. S.
, and
Han
,
K. L.
, 2005, “
Kinematic Path-Tracking of Mobile Robot Using Iterative Learning Control
,”
J. Rob. Syst.
0741-2223,
22
(
2
), pp.
111
121
.
26.
Chen
,
Y. Q.
,
Xu
,
J. X.
, and
Lee
,
T. H.
, 1996, “
An Iterative Learning Controller Using Current Iteration Tracking Error Information and Initial State Learning
,”
Proceedings of the 35th IEEE Conference on Decision and Control
, pp.
3064
3069
.
27.
Xu
,
J. X.
,
Sun
,
L.
,
Chai
,
T.
, and
Tan
,
D.
, 2004, “
High-Order Open and Closed Loop Iterative Learning Control Scheme With Initial State Learning
,”
Eighth International Conference on Control, Automation, Robotics and Vision
, pp.
637
641
.
28.
Chen
,
Y. Q.
,
Xu
,
J. X.
, and
Lee
,
T. H.
, 1996, “
Current Iterative Tracking Error Assisted Iterative Learning Control of Uncertain Discrete-Time Systems
,”
Proceedings of the IEEE Conference on Decision and Control
, pp.
2355
3592
.
29.
Ouyang
,
P. R.
, 2009, “
PD-PD Type Learning Control for Uncertain Nonlinear Systems
,”
2009 ASME International Design Engineering Technical Conferences
, 4(B), pp.
699
707
.
30.
Yu
,
S. J.
,
Wu
,
J. H.
, and
Yan
,
X. W.
, 2002, “
A PD-Type Open-Closed-Loop Iterative Learning Control and Its Convergence for Discrete Systems
,”
Proceedings of the First International Conference on Machine Learning and Cybernetics
, pp.
659
662
.
31.
Choi
,
J. Y.
, and
Lee
,
J. S.
, 2000, “
Adaptive Iterative Learning Control of Uncertain Robotic Systtem
,”
IEE Proc. Control Theory Appl.
,
147
(
2
), pp.
217
223
.
You do not currently have access to this content.