A beam model is developed and discretized to study the dynamic behavior of the cantilever probe of an atomic force microscope. Atomic interaction force models are used with a multimode approximation in order to simulate the probe’s response. The system is excited at two-and-a-half times the fundamental frequency and with a dual-frequency signal consisting of the AFM probe’s fundamental frequency and two-and-a-half times the fundamental frequency. A qualitative change in the response in the form of period doubling is observed for the harmonic off-resonance excitation when significantly influenced by repulsive surface forces. Through the use of dual-frequency excitation, standard response characteristics are maintained, while the inclusion of the off-resonance frequency component results in an identifiable qualitative change in the response. By monitoring specific frequency components, the influence of attractive and repulsive surface forces may be distinguished. This information could then be used to distinguish between imaging regimes when bistability occurs or to operate at the separation distance between surface force regimes to minimize force levels.

1.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
C.
, 1986, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
0031-9007,
56
(
9
), pp.
930
933
.
2.
Martin
,
Y.
,
Williams
,
C. C.
, and
Wickramasinghe
,
H. K.
, 1987, “
Atomic Force Microscope-Force Mapping and Profiling on a Sub 100 Angstrom Scale
,”
J. Appl. Phys.
0021-8979,
61
(
10
), pp.
4723
4729
.
3.
García
,
R.
, and
Perez
,
R.
, 2002, “
Dynamic Atomic Force Microscopy Methods
,”
Surf. Sci. Rep.
0167-5729,
47
(
6–8
), pp.
197
301
.
4.
Zhong
,
Q.
,
Inniss
,
D.
,
Kjoller
,
K.
, and
Elings
,
V. B.
, 1993, “
Fractured Polymer/Silica Fiber Surface Studied by Tapping Mode Atomic Force Microscopy
,”
Surf. Sci. Lett.
0167-2584,
290
, pp.
L688
L692
.
5.
Gleyzes
,
P.
,
Kuo
,
P. K.
, and
Boccara
,
A. C.
, 1991, “
Bistable Behavior of a Vibrating Tip Near a Solid Surface
,”
Appl. Phys. Lett.
0003-6951,
58
(
25
), pp.
2989
2997
.
6.
Dankowicz
,
H.
, 2006, “
Nonlinear Dynamics as an Essential Tool for Non-Destructive Characterization of Soft Nanostructures Using Tapping-Mode Atomic Force Microscopy
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
364
, pp.
3505
3520
.
7.
Dankowicz
,
H.
,
Zhao
,
X.
, and
Misra
,
S.
, 2007, “
Near-Grazing Dynamics in Tapping-Mode Atomic-Force Microscopy
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
697
709
.
8.
Akamine
,
S.
,
Barrett
,
R. C.
, and
Quate
,
C. F.
, 1990, “
Improved Atomic Force Microscope Images Using Microcantilevers With Sharp Tips
,”
Appl. Phys. Lett.
0003-6951,
57
(
3
), pp.
316
318
.
9.
Fotino
,
M.
, 1993, “
Tip Sharpening by Normal and Reverse Electrochemical Etching
,”
Rev. Sci. Instrum.
0034-6748,
64
(
1
), pp.
159
167
.
10.
Neuzil
,
P.
, and
Nagarajan
,
R.
, 2006, “
The Formation of Sharp AFM Tips by Single Step Etching
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
1298
1300
.
11.
Burt
,
D. P.
,
Dobson
,
P. S.
,
Donaldson
,
L.
, and
Weaver
,
J. M. R.
, 2008, “
A Simple Method for High Yield Fabrication of Sharp Silicon Tips
,”
Microelectron. Eng.
0167-9317,
85
(
3
), pp.
625
630
.
12.
Wong
,
S. S.
,
Joselevich
,
E.
,
Woolley
,
A. T.
,
Cheung
,
C. L.
, and
Lieber
,
C. M.
, 1998, “
Covalently Functionalized Nanotubes as Nanometre-Sized Probes in Chemistry and Biology
,”
Nature (London)
0028-0836,
394
(
6688
), pp.
52
55
.
13.
Hafner
,
J. H.
,
Cheung
,
C. L.
,
Woolley
,
A. T.
, and
Lieber
,
C. M.
, 2001, “
Structural and Functional Imaging With Carbon Nanotube AFM Probes
,”
Prog. Biophys. Mol. Biol.
0079-6107,
77
(
1
), pp.
73
110
.
14.
Choi
,
N.
,
Uchihashi
,
T.
,
Nishijima
,
H.
,
Ishida
,
T.
,
Mizutani
,
W.
,
Akita
,
S.
,
Nakayama
,
Y.
,
Ishikawa
,
M.
, and
Tokumoto
,
H.
, 2000, “
Atomic Force Microscopy of Single-Walled Carbon Nanotubes Using Carbon Nanotube Tip
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
39
(
6B
), pp.
3707
3710
.
15.
Kuwahara
,
M.
,
Abe
,
H.
,
Tokumoto
,
H.
,
Shima
,
T.
,
Tominaga
,
J.
, and
Fukuda
,
H.
, 2004, “
Practical Use of a Carbon Nanotube Attached to a Blunt Apex in an Atomic Force Microscope
,”
Mater. Charact.
1044-5803,
52
, pp.
43
48
.
16.
Solares
,
S. D.
, 2008, “
Characterization of Deep Nanoscale Surface Trenches With AFM Using Thin Carbon Nanotube Probes in Amplitude-Modulation and Frequency-Force-Modulation Modes
,”
Meas. Sci. Technol.
0957-0233,
19
, p.
015503
.
17.
Zhang
,
W.
,
Xi
,
Z.
,
Zhang
,
G.
,
Li
,
G.
, and
Guo
,
D.
, 2008, “
Multiple Telescoping Extension of Multiwalled Carbon Nanotubes and Its Application in Atomic Force Microscopy
,”
J. Phys. Chem. C
1932-7447,
112
, pp.
14714
14717
.
18.
Tay
,
A. B. H.
, and
Thong
,
J. T. L.
, 2004, “
Fabrication of Super-Sharp Nanowire Atomic Force Microscope Probes Using a Field Emission Induced Growth Technique
,”
Rev. Sci. Instrum.
0034-6748,
75
(
10
), pp.
3248
3255
.
19.
Solares
,
S. D.
, 2007, “
Frequency and Force Modulation Atomic Force Microscopy: Low-Impact Tapping-Mode Imaging Without Bistability
,”
Meas. Sci. Technol.
0957-0233,
18
, pp.
L9
L14
.
20.
Solares
,
S. D.
, 2007, “
Single Biomolecule Imaging With Frequency and Force Modulation in Tapping-Mode Atomic Force Microscopy
,”
J. Phys. Chem. B
1089-5647,
111
(
9
), pp.
2125
2129
.
21.
Solares
,
S. D.
, and
Crone
,
J. C.
, 2007, “
Real-Time Simulations of Isolated Biomolecule Characterization With Frequency and Force Modulation Atomic Force Microscopy
,”
J. Phys. Chem.
0022-3654,
111
, pp.
10029
10034
.
22.
Jarvis
,
S. P.
,
Lantz
,
M. A.
,
Durig
,
U.
, and
Tokumoto
,
H.
, 1999, “
Off Resonance ac Mode Force Spectroscopy and Imaging With an Atomic Force Microscope
,”
Appl. Surf. Sci.
0169-4332,
140
(
3–4
), pp.
309
313
.
23.
Oral
,
A.
,
Grimble
,
R. A.
,
Ozer
,
H. O.
,
Hoffmann
,
P. M.
, and
Pethica
,
J. B.
, 2001, “
Quantitative Atom-Resolved Force Gradient Imaging Using Noncontact Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
79
(
12
), pp.
1915
1917
.
24.
Hoffmann
,
P. M.
,
Oral
,
A.
,
Grimble
,
R. A.
,
Ozer
,
H. O.
,
Jeffery
,
S.
, and
Pethica
,
J. B.
, 2009, “
Direct Measurement of Interatomic Force Gradients Using an Ultra-Low-Amplitude Atomic Force Microscope
,”
Proc. R. Soc. London, Ser. A
0950-1207,
457
, pp.
1161
1174
.
25.
Hoffmann
,
P. M.
, 2003, “
Dynamics of Small Amplitude, Off-Resonance AFM
,”
Appl. Surf. Sci.
0169-4332,
210
(
1–2
), pp.
140
145
.
26.
Jeffery
,
S.
,
Hoffmann
,
P. M.
,
Pethica
,
J. B.
,
Ramanujan
,
C.
,
Ozer
,
H. O.
, and
Oral
,
A.
, 2004, “
Direct Measurement of Molecular Stiffness and Damping in Confined Water Layers
,”
Phys. Rev. B
0556-2805,
70
(
5
), p.
054114
.
27.
Özer
,
H. O.
,
O’Brien
,
S. J.
,
Norris
,
A.
,
Sader
,
J. E.
, and
Pethica
,
J. B.
, 2005, “
Dissipation Imaging With Low Amplitude Off-Resonance Atomic Force Microscopy
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
44
(
7B
), pp.
5325
5327
.
28.
Balachandran
,
B.
, 2003, “
Dynamics of an Elastic Structure Subjected to Harmonic and Aharmonic Impactor
,”
J. Vib. Control
1077-5463,
9
(
3–4
), pp.
265
279
.
29.
Stark
,
R. W.
, and
Heckl
,
W. M.
, 2000, “
Fourier Transformed Atomic Force Microscopy: Tapping Mode Atomic Force Microscopy Beyond the Hookian Approximation
,”
Surf. Sci.
0039-6028,
457
, pp.
219
228
.
30.
Sahin
,
O.
, and
Atalar
,
A.
, 2001, “
Simulation of Higher Harmonics Generation in Tapping-Mode Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
79
(
26
), pp.
4455
4457
.
31.
Stark
,
R. W.
, and
Heckl
,
W. M.
, 2003, “
Higher Harmonics Imaging in Tapping-Mode Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
74
(
12
), pp.
5111
5114
.
32.
Sahin
,
O.
,
Quate
,
C. F.
,
Solgaard
,
O.
, and
Atalar
,
A.
, 2004, “
Resonant Harmonic Response in Tapping-Mode Atomic Force Microscopy
,”
Phys. Rev. B
0556-2805,
69
(
16
), p.
165416
.
33.
Stark
,
R. W.
,
Schitter
,
G.
,
Stark
,
M.
,
Guckenberger
,
R.
, and
Stemmer
,
A.
, 2004, “
State-Space Model of Freely Vibrating and Surface-Coupled Cantilever Dynamics in Atomic Force Microscopy
,”
Phys. Rev. B
0556-2805,
69
(
8
), p.
085412
.
34.
Crittenden
,
S.
,
Raman
,
A.
, and
Reifenberger
,
R.
, 2005, “
Probing Attractive Forces at the Nanoscale Using Higher-Harmonic Dynamic Force Microscopy
,”
Phys. Rev. B
0556-2805,
72
, p.
235422
.
35.
Dick
,
A. J.
,
Balachandran
,
B.
,
Yabuno
,
H.
,
Numatsu
,
M.
,
Hayashi
,
K.
,
Kuroda
,
M.
, and
Ashida
,
K.
, 2009, “
Utilizing Nonlinear Phenomena to Locate Grazing in the Constrained Motion of a Cantilever Beam
,”
Nonlinear Dyn.
0924-090X,
57
, pp.
335
349
.
36.
Dick
,
A. J.
, and
Solares
,
S. D.
, 2008, “
Utilizing Period-Doubling Bifurcations to Locate Grazing in Atomic Force Microscopy
,”
Proceedings of the Sixth ENOC, EuroMech
.
37.
Dick
,
A. J.
, 2008, “
Near-Grazing Based Intermittent Contact Mode Atomic Force Microscopy
,”
Proceedings of ASME 2008 IMECE
, Boston, Paper No. IMECE2008-68795, pp.
1
9
.
38.
Mayo
,
S. L.
,
Olafson
,
B. D.
, and
Goddard
,
W. A.
, III
, 1990, “
Dreiding: A Generic Force Field for Molecular Simulations
,”
J. Phys. Chem.
0022-3654,
94
, pp.
8897
8909
.
39.
Muller
,
D. J.
,
Schabert
,
F. A.
,
Buldt
,
G.
, and
Engel
,
A.
, 1995, “
Imaging Purple Membranes in Aqueous Solutions at Sub-Nanometer Resolution by Atomic Force Microscopy
,”
Biophys. J.
0006-3495,
68
(
5
), pp.
1681
1686
.
40.
Stark
,
R. W.
, 2004, “
Optical Lever Detection in Higher Eigenmode Dynamic Atomic Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
75
(
11
), pp.
5053
5055
.
41.
Stark
,
M.
,
Guckenberger
,
R.
,
Stemmer
,
A.
, and
Stark
,
R. W.
, 2005, “
Estimating the Transfer Function of the Cantilever in Atomic Force Microscopy: A System Identification Approach
,”
J. Appl. Phys.
0021-8979,
98
, p.
114904
.
42.
Doedel
,
E. J.
, 1981, “
Auto, a Program for Automatic Bifurcation Analysis of Autonomous Systems
,”
Congr. Numer.
0384-9864,
30
, pp.
265
384
.
43.
Lee
,
S. I.
,
Howell
,
S. W.
,
Raman
,
A.
, and
Reifenberger
,
R.
, 2002, “
Nonlinear Dynamics of Microcantilevers in Tapping Mode Atomic Force Microscopy: A Comparison Between Theory and Experiment
,”
Phys. Rev. B
0556-2805,
66
, p.
115409
.
44.
Rutzel
,
S.
,
Lee
,
S. I.
, and
Raman
,
A.
, 2003, “
Nonlinear Dynamics of Atomic-Force-Microscope Probes Driven in Lennard-Jones Potential
,”
Proc. R. Soc. London, Ser. A
0950-1207,
459
, pp.
1925
1948
.
45.
Kikukawa
,
A.
,
Hosaka
,
S.
, and
Imura
,
R.
, 1996, “
Vacuum Compatible High-Sensitive Kelvin Probe Force Microscopy
,”
Rev. Sci. Instrum.
0034-6748,
67
(
4
), pp.
1463
1467
.
46.
Stark
,
R. W.
,
Naujoks
,
N.
, and
Stemmer
,
A.
, 2007, “
Multifrequency Electrostatic Force Microscopy in the Repulsive Regime
,”
Nanotechnology
0957-4484,
18
, p.
065502
.
47.
Proksch
,
R.
, 2006, “
Multifrequency, Repulsive-Mode Amplitude-Modulated Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
89
, p.
113121
.
48.
Rodriguez
,
B. J.
,
Callahan
,
C.
,
Kalinin
,
S. V.
, and
Proksch
,
R.
, 2007, “
Dual-Frequency Resonance-Tracking Atomic Force Microscopy
,”
Nanotechnology
0957-4484,
18
, p.
475504
.
49.
Lozano
,
J. R.
, and
Garcia
,
R.
, 2008, “
Theory of Multifrequency Atomic Force Microscopy
,”
Phys. Rev. Lett.
0031-9007,
100
, p.
076102
.
50.
Chawla
,
G.
, and
Solares
,
S. D.
, 2009, “
Single-Cantilever Dual-Frequency Modulation Atomic Force Microscopy
,”
Meas. Sci. Technol.
0957-0233,
20
, p.
015501
.
51.
Stark
,
R. W.
, 2009, “
Dynamics of Repulsive Dual-Frequency Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
94
, p.
063109
.
52.
Thota
,
P.
,
MacLaren
,
S.
, and
Dankowicz
,
H.
, 2007, “
Controlling Bistability in Tapping-Mode Atomic Force Microscopy Using Dual-Frequency Excitation
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
093108
.
53.
Platz
,
D.
,
Tholen
,
E. A.
,
Pesen
,
D.
, and
Haviland
,
D. B.
, 2008, “
Intermodulation Atomic Force Microscopy
,”
Appl. Phys. Lett.
0003-6951,
92
(
15
), p.
153106
.
54.
Rodrı́guez
,
T. R.
, and
Garcia
,
R.
, 2002, “
Tip Motion in Amplitude Modulation (Tapping-Mode) Atomic Force Microscopy: Comparison Between Continuous and Point-Mass Models
,”
Appl. Phys. Lett.
0003-6951,
80
(
9
), pp.
1646
1648
.
55.
Melcher
,
J.
,
Hu
,
S.
, and
Raman
,
A.
, 2007, “
Equivalent Point-Mass Models of Continuous Atomic Force Microscope Probes
,”
Appl. Phys. Lett.
0003-6951,
91
, p.
053101
.
56.
Derjaguin
,
B. V.
,
Muller
,
V. M.
, and
Toporov
,
Y. P.
, 1975, “
Effects of Contact Deformations on the Adhesion of Particles
,”
J. Colloid Interface Sci.
0021-9797,
53
(
2
), pp.
314
326
.
You do not currently have access to this content.