The dynamic equations of motion of the constrained multibody mechanical system are mixed differential-algebraic equations (DAEs). The numerical solution of the DAE systems solved using ordinary-differential equation (ODE) solvers may suffer from constraint drift phenomenon. To solve this problem, Baumgarte proposed a constraint stabilization method in which a position and velocity terms were added in the second derivative of the constraint equation. Baumgarte’s method is a proportional-derivative (PD) type controller design. In this paper, an Iintegrator controller is included to form a proportional-integral-derivative (PID) controller so that the steady state error of the numerical integration can be reduced. Stability analysis methods in the digital control theory are used to find out the correct choice of the coefficients for the PID controller.

1.
Chung
,
S.
, and
Haug
,
E. J.
, 1993, “
Real-Time Simulation of Multibody Dynamics on Shared Memory Multiprocessors
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
115
, pp.
627
637
.
2.
Petzold
,
L.
, 1982, “
Differential/Algebraic Equations Are Not ODEs
,”
SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput.
0196-5204,
3
(
3
), pp.
367
384
.
3.
Wehage
,
R. A.
, and
Haug
,
E. J.
, 1982, “
Generalized Coordinates Partitioning for Dimension Reduction in Analysis of Constrained Dynamic System
,”
ASME J. Mech. Des.
0161-8458,
104
, pp.
247
255
.
4.
Baumgarte
,
J.
, 1972, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
1
, pp.
1
16
.
5.
Ostermeyer
,
G. -P.
, 1989, “
On Baumgarte Stabilization for Differential Algebraic Equations
,”
Real-Time Integration Methods for Mechanical System Simulation
,
E. J.
Haug
and
R. C.
Deyo
, eds.,
Springer-Verlag
,
Berlin
, pp.
193
208
.
6.
Bae
,
D.
, and
Yang
,
S.
, 1989, “
A Stabilization Method for Kinematic and Kinetic Constraint Equations
,” in
Real-Time Integration Methods for Mechanical System Simulation
,
E. J.
Haug
and
R. C.
Deyo
, eds.,
Springer-Verlag
,
Berlin
, pp.
209
232
.
7.
Chang
,
C. O.
, and
Nikravesh
,
P. E.
, 1985, “
An Adaptive Constraint Violation Stabilization Method for Dynamic Analysis of Mechanical Systems
,”
ASME J. Mech., Transm., Autom. Des.
0738-0666,
17
, pp.
488
492
.
8.
Yoon
,
S.
,
Howe
,
R. M.
, and
Greenwood
,
D. T.
, 1995, “
Stability and Accuracy Analysis of Baumgarte’s Constraint Stabilization Method
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
446
453
.
9.
Lin
,
S. T.
, and
Hong
,
M. C.
, 1998, “
Stabilization Method for the Numerical Integration of Multibody Mechanical System
,”
ASME J. Mech. Des.
0161-8458,
120
(
4
), pp.
565
572
.
10.
Lin
,
S. T.
, and
Hong
,
M. C.
, 2001, “
Stabilization Method for the Numerical Integration of Controlled Multibody Mechanical System: A Hybrid Integration Approach
,”
JSME Int. J., Ser. C
1340-8062,
44
(
1
), pp.
79
88
.
11.
Lin
,
S. T.
, and
Huang
,
J. N.
, 2000, “
Parameters Selection for Baumgarte’s Constraint Stabilization Method Using the Predictor-Corrector Approach
,”
AIAA J. Guidance, Control, and Dynamics
23
(
3
), pp.
566
570
.
12.
Lin
,
S. T.
, and
Huang
,
J. N.
, 2002, “
Stabilization of Baumgarte’s Method Using the Runge-Kutta Approach
,”
ASME J. Mech. Des.
0161-8458,
124
(
4
), pp.
633
641
.
13.
Lin
,
S. T.
, and
Huang
,
J. N.
, 2003, “
Constraint Stabilization Method for the Simulation of Multibody Mechanical Systems
,”
J. Chin. Soc. Mech. Eng.
0257-9731,
24
(
3
), pp.
251
266
.
14.
Ostermayer
,
G. -P.
, 1983, “
Mechanische System Emit Beschranktem Konfigurationsraum
,” Ph.D. thesis, TU Braunschweig, Germany.
15.
Blajer
,
W.
, 2004, “
A Geometric Approach to Solving Problems of Control Constraints: Theory and a DAE Framework
,”
Multibody Syst. Dyn.
1384-5640,
11
, pp.
343
364
.
16.
Nikravesh
,
P. E.
, 1988,
Computer-Aided Analysis of Mechanical Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Blajer
,
W.
, 2002, “
Elimination of Constraint Violation and Accuracy Aspects in Numerical Simulation of Multibody Systems
,”
Multibody Syst. Dyn.
1384-5640,
7
, pp.
265
284
.
18.
Braun
,
D. J.
, and
Goldfarb
,
M.
, 2009, “
Eliminating Constraint Drift in the Numerical Simulation of Constrained Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
3153
3160
.
19.
Park
,
K. C.
, and
Chiou
,
J. C.
, 1988, “
Stabilization of Computational Procedures for Constrained Dynamical Systems
,”
J. Guid. Control Dyn.
0731-5090,
11
, pp.
365
370
.
20.
Arabyan
,
A.
, and
Wu
,
F.
, 1998, “
An Improved Formulation for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
1384-5640,
2
(
1
), pp.
49
69
.
21.
Weijia
,
Z.
,
Zhenkuan
,
P.
, and
Yibing
,
W.
, 2000, “
An Automatic Constraint Violation Stabilization Method for Differential/Algebraic Equations of Motion in Multibody System Dynamics
,”
Appl. Math. Mech.
0253-4827,
21
(
1
), pp.
103
108
.
22.
Neto
,
M. A.
, and
Ambrosio
,
J.
, 2003, “
Stabilization Methods for the Integration of DAE in the Presence of Redundant Constraints
,”
Multibody Syst. Dyn.
1384-5640,
10
, pp.
81
105
.
23.
Flores
,
P.
, and
Seabra
,
E.
, 2009, “
Influence of the Baumgarte Parameters on the Dynamics Response of Multibody Mechanical Systems
,”
Dynamics of Continuous, Discrete and Impulsive Systems, Series B: Application and Algorithms
,
16
(
3
), pp.
415
432
.
24.
Shabana
,
A. A.
, and
Hussein
,
B. A.
, 2009, “
A Two-Loop Sparse Matrix Numerical Integration Procedure for the Solution of Differential/Algebraic Equations: Application to Multibody Systems
,”
J. Sound Vib.
0022-460X,
327
(
3–5
), pp.
557
563
.
25.
Haug
,
E. J.
, 1989,
Computer Aided Kinematics and Dynamics of Mechanical System
,
Allyn and Bacon
,
Boston, MA
, Vol.
I
.
You do not currently have access to this content.