The effect of a fast harmonic base displacement and of a fast periodically time varying stiffness on vibroimpact dynamics of a forced single-sided Hertzian contact oscillator is investigated analytically and numerically near sub- and superharmonic resonances of order 2. The study is carried out using averaging procedure over the fast dynamic and applying a perturbation analysis on the slow dynamic. The results show that a fast harmonic base displacement shifts the location of jumps, triggering the vibroimpact response, toward lower frequencies, while a fast periodically time-varying stiffness shifts the jumps toward higher frequencies. This result has been confirmed numerically for both sub- and superharmonic resonances of order 2. It is also demonstrated that the shift toward higher frequencies produced by a fast harmonic parametric stiffness is larger than that induced by a fast base displacement.

References

1.
Nayak
R.
, 1972, “
Contact Vibrations
,”
J. Sound Vib.
,
22
, pp.
297
322.
2.
Hess
,
D.
, and
Soom
A.
, 1991, “
Normal Vibrations and Friction Under Harmonic Loads: Part 1-Hertzian Contact
,”
ASME J. Tribol.
,
113
, pp.
80
86.
3.
Sabot
,
J.
,
Krempf
,
P.
, and
Janolin
C.
, 1998, “
Nonlinear Vibrations of a Sphere-Plane Contact Excited by a Normal Load
,”
J. Sound Vib.
,
214
, pp.
359
375.
4.
Carson
,
R.
, and
Johnson
K.
, 1971, “
Surface Corrugations Spontaneously Generated in a Rolling Contact Disc Machine
,”
Wear
,
17
, pp.
59
72.
5.
Soom
,
A.
, and
Chen
,
J. W.
, 1986, “
Simulation of Random Surface Roughness-Induced Contact Vibrations at Hertzian Contacts During Steady Sliding
,”
ASME J. Tribol.
,
108
, pp.
123
127.
6.
Rigaud
,
E.
, and
Perret-Liaudet
,
P.
, 2003, “
Experiments and Numerical Results on Nonlinear Vibrations of an Impacting Hertzian Contact. Part 1: Harmonic Excitation
,”
J. Sound Vib.
,
265
, pp.
289
307.
7.
Perret-Liaudet
,
J.
, and
Rigaud
E.
, 2006,
“Response of an Impacting Hertzian Contact to an Order-2 Subharmonic Excitation: Theory and Experiments,”
J. Sound Vib.
,
296
, pp.
319
333
.
8.
Perret-Liaudet
,
J.
, and
Rigaud
E.
, 2007, “
Superharmonic Resonance of Order 2 for an Impacting Hertzian Contact Oscillator: Theory and Experiments
,”
J. Comput. Nonlinear Dyn.
2
, pp.
190
196.
9.
Bichri
,
A.
,
Belhaq
,
M.
, and
Perret-Liaudet
J.
, 2011, “
Control of Vibroimpact Dynamic of a Singlesided-Hertzian Contact Forced Oscillator
,”
Nonlinear Dyn.
,
63
, pp.
51
60.
10.
Stephenson
,
A.
, 1908, “
On Induced Stability
,”
Philos. Mag.
,
15
, pp.
233
236.
11.
Hirsch
,
P.
, 1930,
“Das pendel mit oszillierendem Aufhängepunkt,”
Z. Angew. Math. Mech.
,
10
, pp.
41
52
.
12.
Kapitza
,
P. L.
, 1951, “
Dynamic Stability of a Pendulum With an Oscillating Point of Suspension
,”
Zh. Eksp. Teor. Fiz.
,
21
, pp.
588
597.
13.
Thomsen
,
J. J.
, 2002, “
Some General Effects of Strong High-Frequency Excitation Stiffening, Biasing, and Smoothening
,”
J. Sound Vib.
,
253
, pp.
807
831.
14.
Jensen
,
J. S.
,
Tcherniak
,
D. M.
, and
Thomsen
J. J.
, “
Stiffening Effects of High-Frequency Excitation: Experiments for an Axially Loaded Beam
,”
J. Appl. Mech.
,
253
, pp.
397
402.
15.
Hansen
,
M. H.
, 2000, “
Effect of High-Frequency Excitation on Natural Frequencies of Spinning Discs
,”
J. Sound Vib.
,
234
, pp.
577
589.
16.
Tcherniak
,
D.
, and
Thomsen
,
J. J.
, 1988, “
Slow Effect of Fast Harmonic Excitation for Elastic Structures
,”
Nonlinear Dyn.
,
17
, pp.
227
246.
17.
Sah
,
S. M.
, and
Belhaq
,
M.
, 2008, “
Effect of Vertical High-Frequency Parametric Excitation on Self-Excited Motion in a Delayed van der Pol Oscillator
,”
Chaos Solitons Fractals
,
37
, pp.
1489
1496.
18.
Belhaq
,
M.
, and
Sah
,
S. M.
, 2008, “
Fast Parametrically Excited van der Pol Oscillator With Time Delay State Feedback
,”
Int. J. Non-linear Mech.
,
43
, pp.
124
130.
19.
Belhaq
,
M.
, and
Sah
,
S. M.
, 2008, “
Horizontal Fast Excitation in Delayed van der Pol Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
, pp.
1706
1713.
20.
Belhaq
,
M.
, and
Fahsi
,
A.
, 2008, “
2:1 and 1:1 Frequency-Locking in Fast Excited van der Pol–Mathieu–Duffing oscillator
,”
Nonlinear Dyn.
,
53
, pp.
139
152.
21.
Fahsi
,
A.
,
Belhaq
,
M.
, and
Lakrad
F.
, 2009, “
Suppression of Hysteresis in a Forced van der Pol–Duffing Oscillator
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
, pp.
1609
1616.
22.
Lakrad
,
F.
, and
Belhaq
M.
, 2011, “
Suppression of Pull-in in a Microstructure Actuated by Mechanical Shocks and Electrostatic Forces
,”
Int. J. Non-Linear Mech.
,
146
, pp.
407
414.
23.
Johnson
,
K. L.
, 1979,
ContactMechanics
,
Cambridge University Press
,
Cambridge
.
24.
Blekhman
,
I. I.
, 2000,
Vibrational Mechanics Nonlinear Dynamic Effects, General Approach, Application
,
World Scientific
,
Singapore
.
25.
Thomsen
,
J. J
, 2003,
Vibrations and Stability: Advanced Theory, Analysis, and Tools
,
Springer-Verlag
,
Berlin
.
26.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
You do not currently have access to this content.