The rotations of a parametric pendulum fitted onto a suitable floating support and forced to move vertically under the action of water waves have been studied on the basis of a dedicated wave flume laboratory experiment. An extended experimental campaign has been carried out with the aim of providing insight into the mechanics of the pendulum’s response to the wave forcing and data useful as a benchmark for available theories. A large number of time histories of the pendulum’s angular position have been collected. Rotations have been detected for different values of the frequency and of the amplitude of the excitation, showing the robustness in parameter space, and for different initial conditions, showing the robustness in phase space. This experiment, suggested by the recently developed concept of extracting energy from sea waves, constitutes preliminary experimental proof of that concept’s practical feasibility.

References

1.
Airy
,
G. B.
, 1856, “
Account of Pendulum Experiments Undertaken in the Harton Colliery, for the Purpose of Determining the Mean Density of the Earth
,”
Philos. Trans. R. Soc. London
,
146
, pp.
297
355.
2.
Ghose
,
K.
, and
Sheaa
,
H. R.
, 2009, “
Using a MEMS Pendulum to Measure the Gravity Gradient in Orbit: A New Concept for a Miniaturized Earth Sensor
,”
Procedia Chemistry
,
1
, pp.
548
551.
3.
Wiercigroch
,
M.
, 2010,
“A New Concept of Energy Extraction From Waves via Parametric Pendulor,”
UK Patent pending.
4.
Koch
,
B. P.
, and
Leven
,
R. W.
, 1985, “
Subharmonic and Homoclinic Bifurcations in a Parametrically Forced Pendulum
,”
Physica D
,
16
, pp.
1
13.
5.
Butikov
,
E.
, 1999, “
The Rigid Pendulum—An Antique but Evergreen Physical Model
,”
Eur. J Phys.
,
20
, pp.
429
441.
6.
Szemplinska-Stupnicka
,
W.
,
Tyrkiel
,
E.
, and
Zubrzycki
,
A.
, 2000, “
The Global Bifurcations That Lead to Transient Tumbling Chaos in a Parametrically Driven Pendulum
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
10
, pp.
2161
2175.
7.
Garira
,
W.
, and
Bishop
,
S. R.
, 2003, “
Rotating Solutions of the Parametrically Excited Pendulum
,”
J. Sound Vib.
,
263
, pp.
233
239.
8.
Mann
,
B. P.
, and
Koplow
,
M. A.
, 2006, “
Symmetry Breaking Bifurcations of a Parametrically Excited Pendulum
,”
Nonlinear Dyn.
,
46
, pp.
427
437.
9.
Xu
,
X.
,
Wiercigroch
,
M.
, and
Cartmell
,
M. P.
, 2005, “
Rotating Orbits of a Parametrically-Excited Pendulum
,”
Chaos, Solitons Fractals
,
23
, pp.
1537
1548.
10.
Xu
,
X.
, and
Wiercigroch
,
M.
, 2007, “
Approximate Analytical Solutions for Oscillatory and Rotational Motion of a Parametric Pendulum
,”
Nonlinear Dyn.
,
47
, pp.
311
320.
11.
Lenci
,
S.
,
Pavlovskaia
,
E.
,
Rega
,
G.
, and
Wiercigroch
,
M.
, 2008, “
Rotating Solutions and Stability of Parametric Pendulum by Perturbation Method
,”
J. Sound Vib.
,
310
, pp.
243
259.
12.
Horton
,
B.
,
Wiercigroch
,
M.
, and
Xu
,
X.
, 2008, “
Transient Tumbling Chaos and Damping Identification for Parametric Pendulum
,”
Philos. Trans. R. Soc. London, Ser. A
,
366
, pp.
767
784.
13.
Lenci
,
S.
, and
Rega
,
G.
, 2008, “
Competing Dynamic Solutions in a Parametrically Excited Pendulum: Attractor Robustness and Basin Integrity
,”
ASME J. Comput. Nonlinear Dyn.
,
3
, pp.
041010.
14.
Souza de Paula
,
A.
,
Savi
,
M. A.
, and
Pereira-Pinto
,
F. H. I.
, 2006, “
Chaos and Transient Chaos in an Experimental Nonlinear Pendulum
,”
J. Sound Vib.
,
294
, pp.
585
595.
15.
Blackburn
,
J. A.
,
Zhou-jing
,
Y.
,
Vik
,
S.
,
Smith
,
H. J. T.
, and
Nerenberg
,
M. A. H.
, 1987, “
Experimental Study of Chaos in a Driven Pendulum
,”
Physica D
,
26
, pp.
385
395.
16.
Zhu
,
Q.
, and
Ishitobi
,
M.
, 1999, “
Experimental Study of Chaos in a Driven Triple Pendulum
,”
J. Sound Vib.
,
227
, pp.
230
238.
17.
Awrejcewicz
,
J.
,
Supeł
,
B.
,
Lamarque
,
C.-H.
,
Kudra
,
G.
,
Wasilewski
,
G.
, and
Olejnik
,
P.
, 2008, “
Numerical and Experimental Study of Regular and Chaotic Motion of Triple Physical Pendulum
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
18
, pp.
2883
2915.
18.
Levien
,
R. B.
, and
Tan
,
S. M.
, 1993, “
Double Pendulum: An Experiment in Chaos
,”
Am. J. Phys.
61
, pp.
1038
1044.
19.
Shaw
,
S. W.
, and
Haddow
,
A. G.
, 2003, “
Centrifugal Pendulum Vibration Absorbers: An Experimental and Theoretical Investigation
,”
Nonlinear Dyn.
,
34
, pp.
293
307.
20.
Schmitt
,
J. M.
, and
Bayly
,
P. V.
, 1998, “
Bifurcations in the Mean Angle of a Horizontally Shaken Pendulum: Analysis and Experiment
,”
Nonlinear Dyn.
,
15
, pp.
1
14.
21.
Xu
,
X.
,
Pavlovskaia
,
E.
,
Wiercigroch
,
M.
,
Romeo
,
F.
, and
Lenci
,
S.
, 2007, “
Dynamic Interactions Between Parametric Pendulum and Electro-dynamical Shaker
,”
ZAMM
,
87
, pp.
172
186.
22.
Wiercigroch
,
M.
, 2007, private communication.
23.
Lenci
,
S.
, and
Rega
,
G.
, 2011, “
Experimental vs Theoretical Robustness of Rotating Solutions in a Parametrically Excited Pendulum: A Dynamical Integrity Perspective
,”
Physica D
,
240
, pp.
814
824.
You do not currently have access to this content.