A nonlinear model of inverted pendulum that exhibit unbounded single well potential is described. The complete equation for one-dimensional wind-induced sway is derived. The harmonic balance method along with Melnikov theory are used to seek the effects of aerodynamic drag forces on the amplitude of vibration, on the structure failure, and on the appearance of horseshoes chaos. Numerical simulations have been performed to confirm analytical investigation.
Issue Section:
Research Papers
References
1.
Flesh
, T. K.
, and Grant
, R. H.
, 1991, “The Translation of Turbulent Wind Energy to Individual Corn Plant Motion During Senescence,”
Boundary-Layer Meterol.
, 55
, pp. 161
–177
.2.
Doare
, O.
, Moulia
, B.
, and Delangre
, E.
, 2004, “Effect of Plant Interaction on Wind-Induced Crop Motion,”
J. Biomech. Eng.
126
, pp. 146
–151
.3.
Loram
, I. D.
, Kelly
, S. M.
, and Lakie
, M.
, 2001, “Human Balancing of an Inverted Pendulum: Is Sway Size Controlled by Ankle Impedance,”
J. Physiol. (London)
, 532
, pp. 879
–891
.4.
Kuo
, A. D.
, Donelan
, M. J.
, and Ruina
, A.
, 2005, “Energetic Consequences of Walking Like an Inverted Pendulum: Step to Step Transitions,”
Exerc. Sport Sci. Rev.
, 33
, pp. 84
–87
.5.
Grasser
, F.
, D’Arrigo
, A.
, and Colombi
, S.
, 2002, “Joe: A Mobile, Inverted Pendulum,”
IEEE Trans. Ind. Electron. Control Instrum.
, 49
, pp. 107
–114.
6.
Kim
, Y.
, Kim
, S. H.
, and Kwak
, Y. K.
, 2006, “Dynamics Analysis of a Nonholonic Two-Wheeled Inverted Pendulum Robot,”
J. Intell. Robot. Syst.
, 44
, pp. 25
–46
.7.
Awrejcewicz
, J.
, Supel
, B.
, Lamarque
, C. H.
, Kudra
, G.
, Wasilewski
, G.
, and Olejnik
, P.
, 2008, “Numerical and Experimental Study of Regular and Chaotic Motion of Triple Physical Pendulum,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
, 18
, pp. 2883
–2915
.8.
Saulson
, P. R.
, Stebbins
, R. T.
, Dumont
, F. D.
, and Mock
, S. E.
, 1994, “The Inverted Pendulum as a Probe of Inelasticity,”
Rev. Sci. Instrum.
, 65
, pp. 182
–191
.9.
Smith
, H. J. T.
, and Blackburn
, J. A.
, 1992, “Experimental Study of an Inverted Pendulum,”
Am. J. Phys.
, 60
, pp. 909
–911
.10.
Mogo
, J. B.
, and Woafo
, P.
, 2007, “Dynamics of a Nonlinear Electromechanical Device With a Pendulum Arm,”
ASME J. Comput. Nonlinear Dyn.
, 2
, pp. 374
–379
.11.
Awrejcewicz
, J.
, 1989, Bifurcation and Chaos in Simple Dynamical Systems
, World Scientific
, Singapore
.12.
Tchoukuegno
, R.
, Nana Nbendjo
, B. R.
, and Woafo
, P.
, 2003, “Linear Feedback and Parametric Controls of Vibration and Chaotic Escape in a ϕ6 Potential
,” Int. J. Nonlin. Mech.
, 38
, pp. 531
–541
.13.
Tchoukuegno
, R.
, Nana Nbendjo
, B. R.
, and Woafo
, P.
, 2003, “Resonant Oscillation and Fractals Basin Boundaries of a Particle in a ϕ6 Potential
,” Physica A
, 304
, pp. 362
–378
.14.
Finnigan
, J. J.
, and Mulhearn
, P. J.
, 1978, “A Simple Mathematical Model of Airflow in Waving Plants Canopy,”
Boundary-Layer Meteorol.
, 12
, pp. 415
–431
.15.
Kerzenmacher
, T.
, and Gardiner
, B.
, 1998, “A Mathematical Model to Describe the Dynamic Response of a Spruce Tree to the Wind,”
Trees, Structure and Function
, 12
(263), pp. 385
–394
.16.
Virgin
, N. L.
, Plaut
, R. H.
, and Cheng
, C. C.
, 1992. “Prediction of Escape From a Potential Well Under Harmonic Excitation,”
Int. J. Nonlin. Mech.
, 27
, pp. 357
–365
.17.
Nana Nbendjo
, B. R.
, Salissou
, Y.
, and Woafo
, P.
, 2005, “Active Control With Delay of Catastrophic Motion and Horseshoes Chaos in a Single Well Duffing Qscillator,”
Chaos, Solitons Fractals
23
, pp. 809
–816
.18.
Melnikov
, V. K.
, 1963, “On the Stability of the Center for Some Periodic Pertubations,”
Trans. Mosc. Math. Soc.
, 12
, pp. 1
–57
.19.
Ghost
, D.
, Ray
, A.
, and Chowdhury
, R.
, 2010, “Heteroclinic Orbit, Forced Lorentz System, and Chaos,”
ASME J. Comput. Nonlinear Dyn.
, 5
, pp. 11008
–110015
.20.
Awrejcewicz
, J.
, and Holiske
, M.
, Smooth and Nonsmooth High Dimensional Chaos and the Melnikov Type Methods
(World Scientific
, Singapore
, 2007).21.
Dettman
, C. P.
, Frankel
, N. E.
, and Cornish
, N. J.
, 1995, “Chaos and Fractals Around Black Holes,”
Fractals
, 3
, pp. 161
–181
.Copyright © 2012
by American Society of Mechanical Engineers
You do not currently have access to this content.