This paper presents a local geometric projection (LGP)-based noise reduction technique for vibration signal analysis in rolling bearings. LGP is a nonlinear filtering technique that reconstructs one dimensional time series in a high-dimensional phase space using time-delayed coordinates based on the Takens embedding theorem. From the neighborhood of each point in the phase space, where a neighbor is defined as a local subspace of the whole phase space, the best subspace to which the point will be orthogonally projected is identified. Since the signal subspace is formed by the most significant eigen-directions of the neighborhood, while the less significant ones define the noise subspace, the noise can be reduced by converting the points onto the subspace spanned by those significant eigen-directions back to a new, one-dimensional time series. Improvement on signal-to-noise ratio enabled by LGP is first evaluated using a chaotic system and an analytically formulated synthetic signal. Then, analysis of bearing vibration signals is carried out as a case study. The LGP-based technique is shown to be effective in reducing noise and enhancing extraction of weak, defect-related features, as manifested by both the multi-fractal and envelope spectra of the signal.

References

1.
Zhang
,
J.
,
Kang
,
W.
, and
Liu
,
Y.
, 2009, “
Numerical Method and Bifurcation Analysis of Jeffcott Rotor System Supported in Gas Journal Bearings
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
1
), p.
011007
.
2.
Wang
,
J. J.
,
Li
,
R. F.
, and
Peng
,
X. H.
, 2003, “
Survey of Nonlinear Vibration of Gear Transmission Systems
,”
Appl. Mech. Rev.
,
56
(
3
), pp.
309
329
.
3.
Ghafari
,
S. H.
,
Golnaraghi
,
F.
, and
Ismail
,
F.
, 2008, “
Effect of Localized Faults on Chaotic Vibration of Rolling Element Bearings
,”
Nonlinear Dyn.
,
53
(
4
), pp.
287
301
.
4.
Muller
,
P. C.
,
Bajkowski
,
J.
, and
Doffker
,
D.
, 1994, “
Chaotic Motions and Fault Detection in a Cracked Rotor
,”
Nonlinear Dyn.
,
5
, pp.
233
254
.
5.
Yan
,
R.
,
Liu
,
Y.
, and
Gao
,
R.
, 2010, “
Correlation Dimension Analysis: A Non-linear Time Series Analysis for Data Processing
,”
IEEE Instrum. Meas. Mag.
,
13
(
6
), pp.
19
25
.
6.
Jiang
,
J. D.
,
Chen
,
J.
, and
Qu
,
L. S.
, 1999, “
The Application of Correlation Dimension in Gearbox Condition Monitoring
,”
J. Sound Vib.
,
223
(
4
), pp.
529
541
.
7.
Peng
,
Z.
,
He
,
Y.
,
Guo
,
D.
, and
Chu
,
F.
, 2003, “
Wavelet Multi-fractal Approaches for Singularity Analysis of the Vibration Signals
,”
Key Eng. Mater.
,
245–246
, pp.
565
570
.
8.
Yan
,
R.
, and
Gao
,
R.
, 2007, “
Wavelet-Based Multi-fractal Spectrum for Machine Defect Identification
,”
Proceedings of the ASME Conference on International Mechanical Engineering Congress and Exposition
,
Seattle
,
WA
, Nov. 11–15, Paper No. 41984.
9.
Tao
,
X.
,
Du
,
B.
, and
Xu
,
Y.
, 2007, “
Bearing Fault Diagnosis Based on GMM Model Using Lyapunov Exponent Spectrum
,”
Proceedings of the 33rd Annual Conference of the Industrial Electronics Society
, Nov. 5–8, pp.
2666
2671
.
10.
Arasteh
,
D.
, 2008, “
Measures of Order in Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
3
), p.
031002
.
11.
Kostelich
,
E. J.
, and
Schreiber
,
T.
, 1993, “
Noise Reduction in Chaotic Time Series Data: A Survey of Common Methods
,”
Phys. Rev. E
,
48
(
3
), pp.
1752
1763
.
12.
Kantz
,
H.
, and
Schreiber
,
T.
, 1997,
Nonlinear Time Series Analysis
,
Cambridge University Press
,
Cambridge, UK
.
13.
Kostelich
,
E. J.
, and
Yorke
,
J. A.
, 1988, “
Noise Reduction in Dynamics Systems
,”
Phys. Rev. A
,
38
(
3
), pp.
1649
1952
.
14.
Hammel
,
S. M.
, 1990, “
A Noise Reduction Method for Chaotic System
,”
Phys. Lett. A
,
148
(
8,9
), pp.
421
428
.
15.
Farmer
,
J. D.
, and
Sidorowich
,
J. J.
, 1991, “
Optimal Shadowing and Noise Reduction
,”
Physica D
,
47
(
30
), pp.
373
392
.
16.
Schreiber
,
T.
, 1993, “
Extremely Simple Nonlinear Noise-Reduction Method
,”
Phys. Rev. E
,
47
(
4
), pp.
2401
2404
.
17.
Cawley
,
R.
, and
Hsu
,
G. H.
, 1992, “
Local Geometric Projection Method for Noise Reduction in Chaotic Maps and Flows
,”
Phys. Rev. A
,
46
(
6
), pp.
3057
3082
.
18.
Urbanowicz
,
K.
, and
Holyst
,
J. A.
, 2004, “
Noise Reduction in Chaotic Time Series by a Local Projection With Nonlinear Constraints
,”
Acta Phys. Pol. B
,
35
(
9
), pp.
2175
2197
.
19.
Leontitsis
,
A.
,
Bountis
,
T.
, and
Pagge
,
J.
, 2004, “
An Adaptive Way for Improving Noise Reduction Using Local Geometric Projection
,”
Chaos
,
14
(
1
), pp.
106
110
.
20.
Signorini
,
M. G.
,
Marchetti
,
F.
, and
Cerutti
,
S.
, 2001, “
Applying Nonlinear Noise Reduction in the Analysis of Heart Rate Variability
,”
IEEE Eng. Med. Biol. Mag.
,
20
(
2
), pp.
59
68
.
21.
Sun
,
J.
,
Zheng
,
N.
, and
Wang
,
X.
, 2007, “
Enhancement of Chinese Speech Based on Nonlinear Dynamics
,”
Signal Process.
,
87
, pp.
2431
2445
.
22.
Wang
,
F.
,
Wang
,
Z.
, and
Gao
,
J.
, 2002, “
Extracting Weak Harmonic Signals From Strong Chaotic Interference
,”
Circuits Syst. Signal Process.
,
21
(
4
), pp.
427
448
.
23.
Takens
,
F.
, 1981, “
Detecting Strange Attractors in Turbulence
,”
Dynamical Systems and Turbulence, Lecture Notes in Mathematics
,
D. A.
Rand
and
L. S.
Young
, eds.,
Springer-Verlag
,
Berlin
, pp.
366
381
.
24.
Fraser
,
A. M.
, and
Swinney
,
H. L.
, 1986, “
Independent Coordinates for Strange Attractors From Mutual Information
,”
Phys. Rev. A
,
33
, pp.
1134
1140
.
25.
Grassberger
,
P.
, and
Procaccia
,
I.
, 1983, “
Measuring the Strangeness of Strange Attractors
,”
Physica D
,
9
, pp.
189
208
.
26.
Kennel
,
M. B.
,
Brown
,
R.
, and
Abarbanel
,
H. D.
, 1992, “
Determining Embedding Dimension for Phase-Space Reconstruction Using a Geometrical Construction
,”
Phys. Rev. A
,
45
(
6
), pp.
3403
3411
.
27.
Kim
,
H. S.
,
Eykholt
,
R.
, and
Salas
,
J. D.
, 1999, “
Nonlinear Dynamics, Delay Times and Embedding Windows
,”
Physica D
,
127
, pp.
48
60
.
28.
Lorenz
,
E. N.
, 1963, “
Deterministic Nonperiodic Flow
,”
J. Atmos. Sci.
,
20
, pp.
130
141
.
You do not currently have access to this content.