Abstract

Additive manufacturing (AM) is considered as a key to personalized product realization as it provides great design flexibility. As the flexibility radically expands the design space, current design space exploration methods for personalized geometric designs become time-consuming due to the use of physically based computer simulations (e.g., finite element analysis or computational fluid dynamics). This poses a significant challenge in design for an efficient personalized product realization cycle, which imposes a tight computation cost constraint to timely respond to every new requirement. To address the challenge, we propose a cost-efficient data-driven design space exploration method for personalized geometric design in AM, enabling feasible design regions under the computation constraint. Specifically, the proposed method adopts surrogate modeling of efficient voxel model-based design rules to identify feasible design regions considering both manufacturability and personalized needs. Since design rules take much less time for evaluation than physically based simulations, the proposed method can contribute to timely providing feasible design regions for an efficient personalized product realization cycle. Moreover, we develop a cost-based experimental design for surrogate modeling, which enables the evaluation of additional design points to provide more precise feasible design regions under the computation cost constraint. The merits of the proposed method are elaborated via additively manufactured microbial fuel cell (MFC) anode design.

References

1.
Tofail
,
S. A.
,
Koumoulos
,
E. P.
,
Bandyopadhyay
,
A.
,
Bose
,
S.
,
O’Donoghue
,
L.
, and
Charitidis
,
C.
,
2018
, “
Additive Manufacturing: Scientific and Technological Challenges, Market Uptake and Opportunities
,”
Mater. Today
,
21
(
1
), pp.
22
37
.
2.
Li
,
W.-W.
,
Yu
,
H.-Q.
, and
He
,
Z.
,
2014
, “
Towards Sustainable Wastewater Treatment by Using Microbial Fuel Cells-centered Technologies
,”
Energy Environ. Sci.
,
7
(
3
), pp.
911
924
.
3.
Logan
,
B. E.
,
Hamelers
,
B.
,
Rozendal
,
R.
,
Schröder
,
U.
,
Keller
,
J.
,
Freguia
,
S.
,
Aelterman
,
P.
,
Verstraete
,
W.
, and
Rabaey
,
K.
,
2006
, “
Microbial Fuel Cells: Methodology and Technology
,”
Environ. Sci. Technol.
,
40
(
17
), pp.
5181
5192
.
4.
Santoro
,
C.
,
Arbizzani
,
C.
,
Erable
,
B.
, and
Ieropoulos
,
I.
,
2017
, “
Microbial Fuel Cells: From Fundamentals to Applications. A Review
,”
J. Power. Sources.
,
356
, pp.
225
244
.
5.
Li
,
J.
,
Zhang
,
J.
,
Ye
,
D.
,
Zhu
,
X.
,
Liao
,
Q.
, and
Zheng
,
J.
,
2014
, “
Optimization of Inner Diameter of Tubular Bamboo Charcoal Anode for a Microbial Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
19242
19248
.
6.
Guo
,
K.
,
Prévoteau
,
A.
,
Patil
,
S. A.
, and
Rabaey
,
K.
,
2015
, “
Engineering Electrodes for Microbial Electrocatalysis
,”
Curr. Opin. Biotechnol.
,
33
, pp.
149
156
.
7.
You
,
J.
,
Preen
,
R. J.
,
Bull
,
L.
,
Greenman
,
J.
, and
Ieropoulos
,
I.
,
2017
, “
3d Printed Components of Microbial Fuel Cells: Towards Monolithic Microbial Fuel Cell Fabrication Using Additive Layer Manufacturing
,”
Sustain. Energy Technol. Assessments
,
19
, pp.
94
101
.
8.
Strack
,
G.
,
2019
, “
Additive Manufacturing Approaches for Biological Power Generation
,”
Current Opinion Electrochem.
,
17
, pp.
167
173
.
9.
Jared
,
B. H.
,
Aguilo
,
M. A.
,
Beghini
,
L. L.
,
Boyce
,
B. L.
,
Clark
,
B. W.
,
Cook
,
A.
,
Kaehr
,
B. J.
, and
Robbins
,
J.
,
2017
, “
Additive Manufacturing: Toward Holistic Design
,”
Scr. Mater.
,
135
, pp.
141
147
.
10.
Leung
,
Y.-S.
,
Kwok
,
T.-H.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C.
, and
Chen
,
Y.
,
2019
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.
11.
Ortiz-Martínez
,
V.
,
Salar-García
,
M.
,
De Los Ríos
,
A.
,
Hernández-Fernández
,
F.
,
Egea
,
J.
, and
Lozano
,
L.
,
2015
, “
Developments in Microbial Fuel Cell Modeling
,”
Chem. Eng. J.
,
271
, pp.
50
60
.
12.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
13.
van Dijk
,
N. P.
,
Maute
,
K.
,
Langelaar
,
M.
, and
Van Keulen
,
F.
,
2013
, “
Level-set Methods for Structural Topology Optimization: A Review
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
437
472
.
14.
Deaton
,
J. D.
, and
Grandhi
,
R. V.
,
2014
, “
A Survey of Structural and Multidisciplinary Continuum Topology Optimization: Post 2000
,”
Struct. Multidiscipl. Optim.
,
49
(
1
), pp.
1
38
.
15.
Dbouk
,
T.
,
2017
, “
A Review About the Engineering Design of Optimal Heat Transfer Systems Using Topology Optimization
,”
Appl. Therm. Eng.
,
112
, pp.
841
854
.
16.
Martínez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graph. (TOG)
,
35
(
4
), pp.
1
12
.
17.
Lynn
,
R.
,
Saldana
,
C.
,
Kurfess
,
T.
,
Reddy
,
N.
,
Simpson
,
T.
,
Jablokow
,
K.
,
Tucker
,
T.
,
Tedia
,
S.
, and
Williams
,
C.
,
2016
, “
Toward Rapid Manufacturability Analysis Tools for Engineering Design Education
,”
Proc. Manufact.
,
5
, pp.
1183
1196
.
18.
Shi
,
Y.
,
Zhang
,
Y.
,
Baek
,
S.
,
De Backer
,
W.
, and
Harik
,
R.
,
2018
, “
Manufacturability Analysis for Additive Manufacturing Using a Novel Feature Recognition Technique
,”
Comput.-Aided Des. Appl.
,
15
(
6
), pp.
941
952
.
19.
Morris
,
C.
,
Bekker
,
L.
,
Haberman
,
M. R.
, and
Seepersad
,
C. C.
,
2018
, “
Design Exploration of Reliably Manufacturable Materials and Structures with Applications to Negative Stiffness Metamaterials and Microstereolithography
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111415
.
20.
Xiong
,
Y.
,
Duong
,
P. L. T.
,
Wang
,
D.
,
Park
,
S.-I.
,
Ge
,
Q.
,
Raghavan
,
N.
, and
Rosen
,
D. W.
,
2019
, “
Data-driven Design Space Exploration and Exploitation for Design for Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101101
.
21.
Park
,
S.-i.
, and
Rosen
,
D. W.
,
2016
, “
Quantifying Effects of Material Extrusion Additive Manufacturing Process on Mechanical Properties of Lattice Structures Using As-fabricated Voxel Modeling
,”
Addit. Manuf.
,
12
, pp.
265
273
.
22.
Pham
,
D.
, and
Ji
,
C.
,
2000
, “
Design for Stereolithography
,”
Proc. Inst. Mech. Engin. Part C: J. Mech. Engin. Sci.
,
214
(
5
), pp.
635
640
.
23.
Colombo
,
G.
,
Facoetti
,
G.
, and
Rizzi
,
C.
,
2013
, “
A Digital Patient for Computer-aided Prosthesis Design
,”
Interface Focus
,
3
(
2
), p.
20120082
.
24.
Belter
,
J. T.
,
Segil
,
J. L.
,
Dollar
,
A. M.
, and
Weir
,
R. F.
,
2013
, “
Mechanical Design and Performance Specifications of Anthropomorphic Prosthetic Hands: a Review
,”
J. Rehab. Res. Develop.
,
50
(
5
), pp.
599
618
.
25.
Hodgson
,
A.
,
2013
, “
Iec Tc119–international Standards for Printed Electronics
,”
NIP29: 29th International Conference on Digital Printing Technologies
, Vol.
2013
,
Seattle, WA
,
Society for Imaging Science and Technology
, pp.
369
371
.
26.
Yang
,
Y.
, and
Gao
,
W.
,
2019
, “
Wearable and Flexible Electronics for Continuous Molecular Monitoring
,”
Chem. Soc. Rev.
,
48
(
6
), pp.
1465
1491
.
27.
Kang
,
S.
,
Patil
,
L.
,
Rangarajan
,
A.
,
Moitra
,
A.
,
Robinson
,
D.
,
Jia
,
T.
, and
Dutta
,
D.
,
2019
, “
Ontology-Based Ambiguity Resolution of Manufacturing Text for Formal Rule Extraction
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021003
.
28.
Olewnik
,
A.
,
Brauen
,
T.
,
Ferguson
,
S.
, and
Lewis
,
K.
,
2004
, “
A Framework for Flexible Systems and Its Implementation in Multiattribute Decision Making
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
412
419
.
29.
Gurnani
,
A.
,
Ferguson
,
S.
,
Lewis
,
K.
, and
Donndelinger
,
J.
,
2006
, “
A Constraint-based Approach to Feasibility Assessment in Preliminary Design
,”
AI EDAM
,
20
(
4
), pp.
351
367
.
30.
Siddiqi
,
A.
, and
de Weck
,
O. L.
,
2008
, “
Modeling Methods and Conceptual Design Principles for Reconfigurable Systems
,”
ASME J. Mech. Des.
,
130
(
10
), p.
101102
.
31.
Pate
,
D. J.
,
Patterson
,
M. D.
, and
German
,
B. J.
,
2012
, “
Optimizing Families of Reconfigurable Aircraft for Multiple Missions
,”
J. Aircraft
,
49
(
6
), pp.
1988
2000
.
32.
Choi
,
H.
,
McDowell
,
D. L.
,
Allen
,
J. K.
,
Rosen
,
D.
, and
Mistree
,
F.
,
2008
, “
An Inductive Design Exploration Method for Robust Multiscale Materials Design
,”
ASME J. Mech. Des.
,
130
(
3
), p.
031402
.
33.
Matthews
,
J.
,
Klatt
,
T.
,
Morris
,
C.
,
Seepersad
,
C. C.
,
Haberman
,
M.
, and
Shahan
,
D.
,
2016
, “
Hierarchical Design of Negative Stiffness Metamaterials Using a Bayesian Network Classifier
,”
ASME J. Mech. Des.
,
138
(
4
), p.
041404
.
34.
Shahan
,
D. W.
, and
Seepersad
,
C. C.
,
2012
, “
Bayesian Network Classifiers for Set-based Collaborative Design
,”
ASME J. Mech. Des.
,
134
(
7
), p.
071001
.
35.
Chen
,
W.
, and
Fuge
,
M.
,
2017
, “
Beyond the Known: Detecting Novel Feasible Domains Over An Unbounded Design Space
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111405
.
36.
Rosen
,
D. W.
,
2014
, “
Research Supporting Principles for Design for Additive Manufacturing: This Paper Provides a Comprehensive Review on Current Design Principles and Strategies for Am
,”
Virtual Phys. Prototyping
,
9
(
4
), pp.
225
232
.
37.
Calignano
,
F.
,
Tommasi
,
T.
,
Manfredi
,
D.
, and
Chiolerio
,
A.
,
2015
, “
Additive Manufacturing of a Microbial Fuel Cell’a Detailed Study
,”
Sci. Rep.
,
5
, p.
17373
.
38.
Maskery
,
I.
,
Aremu
,
A.
,
Parry
,
L.
,
Wildman
,
R.
,
Tuck
,
C.
, and
Ashcroft
,
I.
,
2018
, “
Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading
,”
Mater. Des.
,
155
, pp.
220
232
.
39.
Chang
,
P. S.
, and
Rosen
,
D. W.
,
2013
, “
The Size Matching and Scaling Method: a Synthesis Method for the Design of Mesoscale Cellular Structures
,”
Int. J. Comput. Integr. Manufact.
,
26
(
10
), pp.
907
927
.
40.
Chandru
,
V.
,
Manohar
,
S.
, and
Prakash
,
C. E.
,
1995
, “
Voxel-based Modeling for Layered Manufacturing
,”
IEEE Comput. Graph. Appl.
,
15
(
6
), pp.
42
47
.
41.
Barclay
,
J.
,
Dhokia
,
V.
, and
Nassehi
,
A.
,
2016
, “
Additive Manufacturing Simulation Using Signed Distance Fields
,”
International Conference on Sustainable Design and Manufacturing
,
Heraklion, Greece
,
Apr. 4–6
,
Springer
, pp.
435
444
.
42.
Joseph
,
V. R.
,
Dasgupta
,
T.
,
Tuo
,
R.
, and
Wu
,
C. J.
,
2015
, “
Sequential Exploration of Complex Surfaces Using Minimum Energy Designs
,”
Technometrics
,
57
(
1
), pp.
64
74
.
43.
Maaten
,
L. v. d.
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-sne
,”
J. Mach. Learn. Res.
,
9
(
Nov
), pp.
2579
2605
.
44.
You
,
J.
,
Fan
,
H.
,
Winfield
,
J.
, and
Ieropoulos
,
I. A.
,
2020
, “
Complete Microbial Fuel Cell Fabrication Using Additive Layer Manufacturing
,”
Molecules
,
25
(
13
), p.
3051
.
45.
Li
,
J.
,
Jin
,
R.
, and
Hang
,
Z. Y.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
.
46.
Breiman
,
L.
,
2001
, “
Random Forests
,”
Mach. Learn.
,
45
(
1
), pp.
5
32
.
47.
Yang
,
S.
,
Page
,
T.
,
Zhang
,
Y.
, and
Zhao
,
Y. F.
,
2020
, “
Towards An Automated Decision Support System for the Identification of Additive Manufacturing Part Candidates
,”
J. Intel. Manufact.
,
31
(
8
),
1
17
.
48.
Aremu
,
A. O.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I.
,
Hague
,
R. J.
,
Wildman
,
R. D.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
.
49.
Wang
,
J.
,
Xu
,
C.
,
Zhang
,
J.
,
Bao
,
J.
, and
Zhong
,
R.
,
2020
, “
A Collaborative Architecture of the Industrial Internet Platform for Manufacturing Systems
,”
Robot. Comput.-Integr. Manufact.
,
61
, p.
101854
.
50.
Ueng
,
S.-K.
,
Chen
,
L.-G.
, and
Jen
,
S.-Y.
,
2018
, “
Voxel-Based Virtual Manufacturing Simulation for Three-Dimensional Printing
,”
Adv. Mech. Engin.
,
10
(
6
), pp.
1
14
.
You do not currently have access to this content.