Abstract

This paper develops an extreme learning machine for solving linear partial differential equations (PDEs) by extending the normal equations approach for linear regression. The normal equations method is typically used when the amount of available data is small. In PDEs, the only available ground truths are the boundary and initial conditions (BC and IC). We use the physics-based cost function use in state-of-the-art deep neural network-based PDE solvers called physics-informed neural network (PINN) to compensate for the small data. However, unlike PINN, we derive the normal equations for PDEs and directly solve them to compute the network parameters. We demonstrate our method’s feasibility and efficiency by solving several problems like function approximation, solving ordinary differential equations (ODEs), and steady and unsteady PDEs on regular and complicated geometries. We also highlight our method’s limitation in capturing sharp gradients and propose its domain distributed version to overcome this issue. We show that this approach is much faster than traditional gradient descent-based approaches and offers an alternative to conventional numerical methods in solving PDEs in complicated geometries.

References

1.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: the Finite Volume Method
,
Pearson Education
,
London
.
2.
Özişik
,
M. N.
,
Orlande
,
H. R.
,
Colaço
,
M. J.
, and
Cotta
,
R. M.
,
2017
,
Finite Difference Methods in Heat Transfer
,
CRC Press
,
Boca Raton, FL
.
3.
Atangana
,
A.
,
2018
,
Chapter 3 – Groundwater Pollution
,
A.
Atangana
, ed.,
Academic Press
,
Cambridge, MA
, pp.
49
72
.
4.
Finlay
,
W. H.
,
2019
, “
Chapter 7 - Particle Deposition in the Respiratory Tract
,”
The Mechanics of Inhaled Pharmaceutical Aerosols (Second Edition)
,
W. H.
,
Finlay
, ed.,
Academic Press
,
London
, pp.
133
182
.
5.
LeVeque
,
R. J.
,
2007
,
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
, Vol.
98
,
SIAM
,
Philadelphia, PA
.
6.
Pozrikidis
,
C.
,
2011
,
Introduction to Theoretical and Computational Fluid Dynamics
,
Oxford University Press
,
Oxford
.
7.
Kent
,
J.
,
2019
, “
Capturing the Cross-Terms in Multidimensional Advection Schemes
,”
Int. J. Numer. Methods Fluids
,
91
(
2
), pp.
49
62
.
8.
Vabishchevich
,
P. N.
,
2018
, “
Two-Level Schemes for the Advection Equation
,”
J. Comput. Phys.
,
363
, pp.
158
177
.
9.
Borker
,
R.
,
Farhat
,
C.
, and
Tezaur
,
R.
,
2017
, “
A High-Order Discontinuous Galerkin Method for Unsteady Advection–Diffusion Problems
,”
J. Comput. Phys.
,
332
, pp.
520
537
.
10.
Rao
,
S. S.
,
2017
,
The Finite Element Method in Engineering
,
Butterworth-Heinemann
,
Oxford
.
11.
Berg
,
J.
, and
Nyström
,
K.
,
2018
, “
A Unified Deep Artificial Neural Network Approach to Partial Differential Equations in Complex Geometries
,”
Neurocomputing
,
317
(
9
), pp.
28
41
.
12.
Quirk
,
J. J.
,
1997
,
A Contribution to the Great Riemann Solver Debate
,
M. Y.
Hussaini
,
B.
van Leer
, and
J.
Van Rosendale
, eds., Upwind and High-Resolution Schemes.,
Springer
,
Berlin, Heidelberg.
, pp.
550
569
.
13.
Buhmann
,
M. D.
,
2003
,
Radial Basis Functions: Theory and Implementations
, Vol.
12
,
Cambridge University Press
,
Cambridge
.
14.
Huang
,
G.-B.
,
Chen
,
L.
, and
Siew
,
C. K.
,
2006
, “
Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes
,”
IEEE Trans. Neural Networks
,
17
(
4
), pp.
879
892
.
15.
Raissi
,
M.
, and
Karniadakis
,
G. E.
,
2018
, “
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
357
, pp.
125
141
.
16.
Liu
,
D.
, and
Wang
,
Y.
,
2019
, “
Multi-Fidelity Physics-Constrained Neural Network and Its Application in Materials Modeling
,”
ASME J. Mech. Des.
,
141
(
12
), p.
121403
.
17.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2021
, “
Physics-Informed Neural Networks for Heat Transfer Problems
,”
ASME J. Heat Transfer
,
143
(
6
), p.
060801
.
18.
Gao
,
H.
,
Sun
,
L.
, and
Wang
,
J.-X.
,
2021
, “
Phygeonet: Physics-Informed Geometry-Adaptive Convolutional Neural Networks for Solving Parameterized Steady-State PDEs on Irregular Domain
,”
J. Comput. Phys.
,
428
, p.
110079
.
19.
Karpatne
,
A.
,
Atluri
,
G.
,
Faghmous
,
J. H.
,
Steinbach
,
M.
,
Banerjee
,
A.
,
Ganguly
,
A.
,
Shekhar
,
S.
,
Samatova
,
N.
, and
Kumar
,
V.
,
2017
, “
Theory-guided Data Science: A New Paradigm for Scientific Discovery From Data
,”
IEEE. Trans. Knowl. Data Eng.
,
29
(
10
), pp.
2318
2331
.
20.
Viana
,
F. A. C.
, and
Subramaniyan
,
A. K.
,
2021
, “
A Survey of Bayesian Calibration and Physics-Informed Neural Networks in Scientific Modeling
,”
Arch. Comput. Methods Eng.
,
139
(
1
), p.
011014
.
21.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2020
, “
Solution of Biharmonic Equation in Complicated Geometries With Physics Informed Extreme Learning Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061004
.
22.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
23.
Huang
,
G.-B.
,
Zhu
,
Q.-Y.
, and
Siew
,
C.-K.
,
2006
, “
Extreme Learning Machine: Theory and Applications
,”
Neurocomputing
,
70
(
1–3
), pp.
489
501
.
24.
Balasundaram
,
S.
,
Kapil
,
2011
, “
Application of Error Minimized Extreme Learning Machine for Simultaneous Learning of a Function and Its Derivatives
,”
Neurocomputing
,
74
(
16
), pp.
2511
2519
. Advances in Extreme Learning Machine: Theory and Applications Biological Inspired Systems. Computational and Ambient Intelligence.
25.
Yang
,
Y.
,
Hou
,
M.
, and
Luo
,
J.
,
2018
, “
A Novel Improved Extreme Learning Machine Algorithm in Solving Ordinary Differential Equations by Legendre Neural Network Methods
,”
Adv. Differ. Equ.
,
2018
(
1
), p.
469
.
26.
Sun
,
H.
,
Hou
,
M.
,
Yang
,
Y.
,
Zhang
,
T.
,
Weng
,
F.
, and
Han
,
F.
,
2018
, “
Solving Partial Differential Equation Based on Bernstein Neural Network and Extreme Learning Machine Algorithm
,”
Neu. Process. Lett.
,
50
, pp.
1153
1172
.
27.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2019
, “
Physics Informed Extreme Learning Machine (PIELM)–A Rapid Method for the Numerical Solution of Partial Differential Equations
,”
Neurocomputing
,
391
, pp.
96
118
.
28.
Dwivedi
,
V.
,
Parashar
,
N.
, and
Srinivasan
,
B.
,
2020
, “
Distributed Learning Machines for Solving Forward and Inverse Problems in Partial Differential Equations
,”
Neurocomputing
,
420
, pp.
299
316
.
You do not currently have access to this content.