Abstract

The issue of training operators in the use of machinery is topical in the industrial field and in many other contexts, such as university laboratories. Training is about learning how to use machinery properly and safely. Beyond the possibility of studying manuals to learn how to use a machine, operators typically learn through on-the-job training. Indeed, learning by doing is in general more effective, tasks done practically are remembered more easily, and the training is more motivating and less tiresome. On the other hand, this training method has several negative factors. In particular, safety may be a major issue in some training situations. An approach that may contribute overcoming negative factors is using Virtual Reality and digital simulation techniques for operators training. The research work presented in this paper concerns the development of a multisensory virtual reality application for training operators to properly use machinery and personal protective equipment (PPE). The context selected for the study is a university laboratory hosting manufacturing machinery. The application allows user to navigate the laboratory, to approach a machine and learn about how to operate it, and also to use proper PPE while operating a machine. Specifically, the paper describes the design and implementation of the application and presents the results of preliminary testing sessions.

References

1.
Pecher
,
D.
, and
Zwaan
,
R. A.
,
2005
,
Grounding Cognition: The Role of Perception and Action in Memory, Language, and Thinking
,
Cambridge University Press
,
Cambridge
.
2.
Checa
,
D.
, and
Bustillo
,
A.
,
2020
, “
A Review of Immersive Virtual Reality Serious Games to Enhance Learning and Training
,”
Multimed. Tools. Appl.
,
79
(
9–10
), pp.
5501
5527
.
3.
Abras
,
C.
,
Maloney-Krichmar
,
D.
, and
Preece
,
J.
,
2004
, “User-Centered Design,”
Encyclopedia of Human-Computer Interaction
,
W.
Bainbridge
, ed.,
Sage Publications
,
Thousand Oaks
, Vol.
37
, No.
4
, pp.
445
456
.
4.
Bordegoni
,
M.
,
Carulli
,
M.
,
Shi
,
Y.
, and
Ruscio
,
D.
,
2017
, “
Investigating the Effects of Odour Integration in Reading and Learning Experiences
,”
Interact. Des. Archit.
, (
32
), pp.
104
125
.
5.
Bordegoni
,
M.
,
Carulli
,
M.
, and
Spadoni
,
E.
,
2021
, “
Multisensory VR for Delivering Training Content to Machinery Operators
,”
Proceedings of the ASME 2021 IDETC/CIE Conference
,
Aug. 17–19
, Online.
6.
Bell
,
J. T.
, and
Fogler
,
H. S.
,
1995
, “
The Investigation and Application of Virtual Reality as an Educational Tool
,”
American Society for Engineering Education 1995 Annual Conference
,
Anaheim, CA
,
June 25–28
.
7.
Lui
,
M.
,
McEwen
,
R.
, and
Mullally
,
M.
,
2020
, “
Immersive Virtual Reality for Supporting Complex Scientific Knowledge: Augmenting Our Understanding With Physiological Monitoring
,”
Br. J. Educ. Technol.
,
51
(
6
), pp.
2180
2198
.
8.
Mikropoulos
,
T. A.
, and
Natsis
,
A.
,
2011
, “
Educational Virtual Environments: A Ten-Year Review of Empirical Research (1999-2009)
,”
Comput. Educ.
,
56
(
3
), pp.
769
780
.
9.
Kaminska
,
D.
,
Sapinski
,
T.
,
Wiak
,
S.
, et al
,
2019
, “
Virtual Reality and Its Applications in Education: Survey
,”
Information
,
10
(
10
), p.
318
.
10.
Parong
,
J.
, and
Mayer
,
R. E.
,
2018
, “
Learning Science in Immersive Virtual Reality
,”
J. Educ. Psychol.
,
110
(
6
), p.
785
.
11.
Alqahtani
,
A. S.
,
Daghestani
,
L. F.
, and
Ibrahim
,
L. F.
,
2017
, “
Environments and System Types of Virtual Reality Technology in STEM: A Survey
,”
Int. J. Adv. Comput. Sci. Appl.
,
8
(
6
), pp.
77
89
.
12.
Shen
,
H.
,
Zhang
,
J.
,
Yang
,
B.
, and
Jia
,
B.
,
2019
, “
Development of an Educational Virtual Reality Training System for Marine Engineers
,”
Comput. Appl. Eng. Educ.
,
27
(
3
), pp.
580
602
.
13.
Velev
,
D.
, and
Zlateva
,
P.
,
2017
, “
Virtual Reality Challenges in Education and Training
,”
Int. J. Learn. Teach.
,
3
(
1
), pp.
33
37
.
14.
Allcoat
,
D.
, and
von Mühlenen
,
A.
,
2018
, “
Learning in Virtual Reality: Effects on Performance, Emotion and Engagement
,”
Res. Learn. Technol.
,
26
, pp.
1
13
.
15.
Makransky
,
G.
,
Terkildsena
,
T. S.
, and
Mayerb
,
R. E.
,
2019
, “
Adding Immersive Virtual Reality to a Science lab Simulation Causes More Presence but Less Learning
,”
Learn. Instr.
,
60
, pp.
225
236
.
16.
Makransky
,
G.
,
Borre-Gude
,
S.
, and
Mayer
,
R. E.
,
2019
, “
Motivational and Cognitive Benefits of Training in Immersive Virtual Reality Based on Multiple Assessments
,”
Comput. Assist. Learn.
,
35
(
6
), pp.
691
707
.
17.
Norman
,
D. A.
,
1993
,
Things That Make us Smart: Defending Human Attributes in the age of the Machine
,
Addison-Wesley
,
Reading, MA
.
18.
Zhang
,
L.
,
Bowman
,
D. A.
, and
Jones
,
C.
,
2019
, “
Exploring Effects of Interactivity on Learning With Interactive Storytelling in Immersive Virtual Reality
,”
2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games)
,
Vienna, Austria
,
Sept. 4–6
, pp.
1
8
.
19.
Vélaz
,
Y.
,
Rodríguez Arce
,
J.
,
Gutiérrez
,
T.
,
Lozano-Rodero
,
A.
, and
Suescun
,
A.
,
2014
, “
The Influence of Interaction Technology on the Learning of Assembly Tasks Using Virtual Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
4
), p.
041007
.
20.
Stepan
,
K.
,
Zeiger
,
J.
,
Hanchuk
,
S.
,
Del Signore
,
A.
,
Shrivastava
,
R.
,
Govindaraj
,
S.
, and
Iloreta
,
A.
,
2017
, “
Immersive Virtual Reality as a Teaching Tool for Neuroanatomy
,”
Int. Forum Allergy Rhinol.
,
7
(
10
), pp.
1006
1013
.
21.
Psotka
,
J.
,
1995
, “
Immersive Training Systems: Virtual Reality and Education and Training
,”
Instr. Sci.
,
23
(
5/6
), pp.
405
431
.
22.
Loftin
,
R. B.
, et al
,
1997
, “Virtual Environment Technology in Training,”
Virtual Reality, Training’s Future?
. Defense Research Series, Vol.
6
,
R. J.
Seidel
, and
P. R.
Chatelier
, eds.,
Springer
,
Boston, MA
.
23.
Lin
,
F.
,
Ye
,
L.
,
Duffy
,
V. G.
, and
Su
,
C. J.
,
2002
, “
Developing Virtual Environments for Industrial Training
,”
Inf. Sci.
,
140
(
1–2
), pp.
153
170
.
24.
Berg
,
L. P.
, and
Vance
,
J. M.
,
2017
, “
An Industry Case Study: Investigating Early Design Decision Making in Virtual Reality
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
1
), p.
011001
.
25.
Satter
,
K.
, and
Butler
,
A.
,
2015
, “
Competitive Usability Analysis of Immersive Virtual Environments in Engineering Design Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
3
), p.
031001
.
26.
Perez-Ramirez
,
M.
,
Arroyo-Figueroa
,
G.
, and
Ayala
,
A.
,
2019
, “
The use of a Virtual Reality Training System to Improve Technical Skill in the Maintenance of Live-Line Power Distribution Networks
,”
Interact. Learn. Environ.
,
29
(
4
), pp.
527
544
.
27.
Gavish
,
N.
,
Gutiérrez
,
T.
,
Webel
,
S.
,
Rodríguez
,
J.
,
Peveri
,
M.
,
Bockholt
,
U.
, and
Tecchia
,
M.
,
2015
, “
Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks
,”
Interact. Learn. Environ.
,
23
(
6
), pp.
778
798
.
28.
Abidi
,
M. H.
,
Al-Ahmari
,
A.
,
Ahmad
,
A.
,
Ameen
,
W.
, and
Alkhalefah
,
H.
,
2019
, “
Assessment of Virtual Reality-Based Manufacturing Assembly Training System
,”
Int. J. Adv. Manuf. Syst.
,
105
(
9
), pp.
3743
3759
.
29.
Roldán
,
J.
,
Crespo
,
E.
,
Martín-Barrio
,
A.
,
Peña-Tapia
,
E.
, and
Barrientos
,
A.
,
2019
, “
A Training System for Industry 4.0 Operators in Complex Assemblies Based on Virtual Reality and Process Mining
,”
Robot. Comput. Integr. Manuf.
,
59
, pp.
305
316
.
30.
Hoover
,
M.
,
Miller
,
J.
,
Gilbert
,
S.
, and
Winer
,
E.
,
2020
, “
Measuring the Performance Impact of Using the Microsoft HoloLens 1 to Provide Guided Assembly Work Instructions
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061001
.
31.
Tichon
,
J.
, and
Burgess-Limerick
,
R.
,
2011
, “
A Review of Virtual Reality as a Medium for Safety Related Training in Mining
,”
J Health Safety Res. Pract.
,
3
(
1
), pp.
33
40
.
32.
Sacks
,
R.
,
Perlman
,
A.
, and
Barak
,
R.
,
2013
, “
Construction Safety Training Using Immersive Virtual Reality
,”
Constr. Manag. Econ.
,
31
(
9
), pp.
1005
1017
.
33.
Manca
,
D.
,
Brambilla
,
S.
, and
Colombo
,
S.
,
2013
, “
Bridging Between Virtual Reality and Accident Simulation for Training of Process-Industry Operators
,”
Adv. Eng. Softw.
,
55
, pp.
1
9
.
34.
Pedram
,
S.
,
Palmisano
,
S.
,
Skarbez
,
R.
,
Perez
,
P.
, and
Farrelly
,
M.
,
2020
, “
Investigating the Process of Mine Rescuers’ Safety Training with Immersive Virtual Reality: A Structural Equation Modelling Approach
,”
Comput. Educ.
,
153
, p.
103891
.
35.
Jorge
,
V. A.
,
Sarmiento
,
W. J.
,
Maciel
,
A.
,
Nedel
,
L.
,
Collazos
,
C. A.
,
Faria
,
F.
, and
Oliveira
,
J.
,
2013
, “
Interacting With Danger in an Immersive Environment: Issues on Cognitive Load and Risk Perception
,”
Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology
,
Singapore
,
ACM
, pp.
83
92
.
36.
Leder
,
J.
,
Horlitz
,
T.
,
Puschmann
,
P.
,
Wittstock
,
V.
, and
Schütz
,
A.
,
2019
, “
Comparing Immersive Virtual Reality and Powerpoint as Methods for Delivering Safety Training: Impacts on Risk Perception, Learning, and Decision Making
,”
Safety Sci.
,
111
, pp.
271
286
.
37.
Feng
,
Z.
,
González
,
V. A.
,
Amor
,
R.
,
Lovreglio
,
R.
, and
Cabrera-Guerrero
,
G.
,
2018
, “
Immersive Virtual Reality Serious Games for Evacuation Training and Research: A Systematic Literature Review
,”
Comput. Educ.
,
127
, pp.
252
266
.
38.
Burke
,
M. J.
,
Sarpy
,
S. A.
,
Smith-Crowe
,
K.
,
Chan-Serafin
,
S.
,
Salvador
,
R. O.
, and
Islam
,
G.
,
2006
, “
Relative Effectiveness of Worker Safety and Health Training Methods
,”
Am. J. Public Health
,
96
(
2
), pp.
315
324
.
39.
Hartson
,
R.
, and
Pyla
,
P. S.
,
2012
,
The UX Book: Process and Guidelines for Ensuring a Quality User Experience
,
Morgan Kaufmann
,
San Diego
.
40.
Porcherot
,
C.
,
Delplanque
,
S.
,
Raviot-Derrien
,
S.
,
Le Calvé
,
B.
,
Chrea
,
C.
,
Gaudreau
,
N.
, and
Cayeux
,
I.
,
2010
, “
How do you Feel When you Smell This? Optimization of a Verbal Measurement of Odor-Elicited Emotions
,”
Food Qual. Prefer.
,
21
(
8
), pp.
938
947
.
41.
Rolls
,
E. T.
,
Kringelbach
,
M. L.
, and
De Araujo
,
I. E. T.
,
2003
, “
Different Representations of Pleasant and Unpleasant Odours in the Human Brain
,”
Eur. J. Neurosci.
,
18
(
3
), pp.
695
703
.
42.
Ehrlichman
,
H.
, and
Bastone
,
L.
,
1992
, “The use of Odor in the Study of Emotion,”
Fragrance: The Psychology and Biology of Perfume
,
V. S.
Toller
, and
G. H.
Dodd
, eds.,
Elsevier
,
New York
, pp.
143
159
.
43.
Chu
,
S.
, and
Downes
,
J. J.
,
2002
, “
Proust Nose Best: Odors are Better Cues of Autobiographical Memory
,”
Mem. Cognit.
,
30
(
4
), pp.
511
518
.
44.
Herz
,
R. S.
,
1998
, “
Are Odors the Best Cues to Memory?: A Cross-Modal Comparison of Associative Memory Stimuli
,”
Ann. N. Y. Acad. Sci.
,
855
(
1
), pp.
670
674
.
45.
Herz
,
R. S.
,
2004
, “
A Naturalistic Analysis of Autobiographical Memories Triggered by Olfactory Visual and Auditory Stimuli
,”
Chem. Senses
,
29
(
3
), pp.
217
224
.
46.
Epple
,
G.
, and
Herz
,
R. S.
,
1999
, “
Ambient Odors Associated to Failure Influence Cognitive Performance in Children
,”
Dev. Psychobiol.
,
35
(
2
), pp.
103
107
.
47.
Gonzàlez
,
J.
,
Barros-Loscertales
,
A.
,
Pulvermuller
,
F.
,
Meseguer
,
V.
,
Sanjuan
,
A.
,
Belloch
,
V.
, and
Avilaa
,
C.
,
2006
, “
Reading Cinnamon Activates Olfactory Brain Regions
,”
NeuroImage
,
32
(
2
), pp.
906
912
.
48.
Lorig
,
T.
,
1992
, “Cognitive and non-Cognitive Effects of Odour Exposure: Electrophysiological and Behavioral Evidence,”
Fragrance: The Psychology and Biology of Perfume
,
V. S.
Toller
, and
G. H.
Dodd
, eds.,
Elsevier
,
New York
, pp.
161
173
.
49.
Bordegoni
,
M.
, and
Carulli
,
M.
,
2016
, “
Evaluating Industrial Products in an Innovative Visual-Olfactory Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
3
), p.
030904
.
50.
Micaroni
,
L.
,
Carulli
,
M.
,
Ferrise
,
F.
,
Gallace
,
A.
, and
Bordegoni
,
M.
,
2019
, “
An Olfactory Display to Study the Integration of Vision and Olfaction in a Virtual Reality Environment
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p. 031015.
51.
Terracciano
,
A.
,
Dima
,
M.
,
Carulli
,
M.
, and
Bordegoni
,
M.
,
2017
, “
Mapping Memory Routes: A Multisensory Interface for Sensorial Urbanism and Critical Heritage Studies
,”
Proceedings of the 2017 ACM SIGCHI Conference on Human Factors in Computing Systems
, pp.
353
356
.
52.
Maggioni
,
E.
,
Cobden
,
R.
, and
Obrist
,
M.
,
2019
, “
OWidgets: A Toolkit to Enable Smell-Based Experience Design
,”
Int. J. Hum-Comput. Stud.
,
130
, pp.
248
260
.
53.
Carulli
,
M.
,
Bordegoni
,
M.
,
Bernecich
,
F.
,
Spadoni
,
E.
, and
Bolzan
,
P.
,
2019
, “
A Multisensory Virtual Reality System For Astronauts’ Entertainment And Relaxation
,”
Proceedings of the ASME 2019 IDETC/CIE 2Conference
,
Anaheim, CA
,
Aug. 18–21
.
54.
Witmer
,
B. G.
, and
Singer
,
M. J.
,
1998
, “
Measuring Presence in Virtual Environments: A Presence Questionnaire
,”
Presence: Teleoperators Virtual Environ.
,
7
(
3
), pp.
225
240
.
You do not currently have access to this content.