Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Both computational and experimental material discovery bring forth the challenge of exploring multidimensional and often nondifferentiable parameter spaces, such as phase diagrams of Hamiltonians with multiple interactions, composition spaces of combinatorial libraries, processing spaces, and molecular embedding spaces. Often these systems are expensive or time consuming to evaluate a single instance, and hence classical approaches based on exhaustive grid or random search are too data intensive. This resulted in strong interest toward active learning methods such as Bayesian optimization (BO) where the adaptive exploration occurs based on human learning (discovery) objective. However, classical BO is based on a predefined optimization target, and policies balancing exploration and exploitation are purely data driven. In practical settings, the domain expert can pose prior knowledge of the system in the form of partially known physics laws and exploration policies often vary during the experiment. Here, we propose an interactive workflow building on multifidelity BO (MFBO), starting with classical (data-driven) MFBO, then expand to a proposed structured (physics-driven) structured MFBO (sMFBO), and finally extend it to allow human-in-the-loop interactive interactive MFBO (iMFBO) workflows for adaptive and domain expert aligned exploration. These approaches are demonstrated over highly nonsmooth multifidelity simulation data generated from an Ising model, considering spin–spin interaction as parameter space, lattice sizes as fidelity spaces, and the objective as maximizing heat capacity. Detailed analysis and comparison show the impact of physics knowledge injection and real-time human decisions for improved exploration with increased alignment to ground truth. The associated notebooks allow to reproduce the reported analyses and apply them to other systems.2

References

1.
Wetzel
,
S. J.
, and
Scherzer
,
M.
,
2017
, “
Machine Learning of Explicit Order Parameters: From the Ising Model to SU(2) Lattice Gauge Theory
,”
Phys. Rev. B
,
96
(
18
), p.
184410
.
2.
Tsutsui
,
K.
, and
Moriguchi
,
K.
,
2021
, “
A Computational Experiment on Deducing Phase Diagrams From Spatial Thermodynamic Data Using Machine Learning Techniques
,”
Calphad
,
74
, p.
102303
.
3.
Rodrigues de Assis Elias
,
D.
,
Granato
,
E.
, and
de Koning
,
M.
,
2022
, “
Global Exploration of Phase Behavior in Frustrated Ising Models Using Unsupervised Learning Techniques
,”
Physica A
,
589
, p.
126653
.
4.
Acevedo
,
S.
,
Arlego
,
M.
, and
Lamas
,
C. A.
,
2021
, “
Phase Diagram Study of a Two-Dimensional Frustrated Antiferromagnet via Unsupervised Machine Learning
,”
Phys. Rev. B
,
103
(
13
), p.
134422
.
5.
Bisardi
,
M.
,
Rodriguez-Rivas
,
J.
,
Zamponi
,
F.
, and
Weigt
,
M.
,
2022
, “
Modeling Sequence-Space Exploration and Emergence of Epistatic Signals in Protein Evolution
,”
Mol. Biol. Evol.
,
39
(
1
), p.
msab321
.
6.
Inaba
,
K.
,
Inagaki
,
T.
,
Igarashi
,
K.
,
Utsunomiya
,
S.
,
Honjo
,
T.
,
Ikuta
,
T.
,
Enbutsu
,
K.
, et al
,
2022
, “
Potts Model Solver Based on Hybrid Physical and Digital Architecture
,”
Commun. Phys.
,
5
(
1
), pp.
1
8
.
7.
Wilburn
,
G. W.
, and
Eddy
,
S. R.
,
2020
, “
Remote Homology Search With Hidden Potts Models
,”
PLoS Comput. Biol.
,
16
(
11
), p.
e1008085
.
8.
Iqbal
,
Y.
,
Müller
,
T.
,
Ghosh
,
P.
,
Gingras
,
M. J. P.
,
Jeschke
,
H. O.
,
Rachel
,
S.
,
Reuther
,
J.
, and
Thomale
,
R.
,
2019
, “
Quantum and Classical Phases of the Pyrochlore Heisenberg Model With Competing Interactions
,”
Phys. Rev. X
,
9
(
1
), p.
011005
.
9.
Rota
,
R.
,
Minganti
,
F.
,
Biella
,
A.
, and
Ciuti
,
C.
,
2018
, “
Dynamical Properties of Dissipative XYZ Heisenberg Lattices
,”
New J. Phys.
,
20
(
4
), p.
045003
.
10.
Youssef
,
M.
,
Ali
,
S. I.
,
Abd-Rabbou
,
M. Y.
, and
Obada
,
A.-S. F.
,
2023
, “
Exploring Quantum Correlations of Two-Qubit Heisenberg Chain Model Influenced by Magnetic Dipole–Dipole, Magnetic Field, and a Symmetric Cross Interaction
,”
Quantum Inf. Process.
,
22
(
6
), p.
229
.
11.
Brif
,
C.
,
Grace
,
M. D.
,
Sarovar
,
M.
, and
Young
,
K. C.
,
2014
, “
Exploring Adiabatic Quantum Trajectories via Optimal Control
,”
New J. Phys.
,
16
(
6
), p.
065013
.
12.
Liu
,
C.-Y.
,
Waidyasooriya
,
H. M.
, and
Hariyama
,
M.
,
2022
, “
Design Space Exploration for an FPGA-Based Quantum Annealing Simulator With Interaction-Coefficient-Generators
,”
J. Supercomput.
,
78
(
1
), pp.
1
17
.
13.
Pagano
,
G.
,
Bapat
,
A.
,
Becker
,
P.
,
Collins
,
K. S.
,
De
,
A.
,
Hess
,
P. W.
,
Kaplan
,
H. B.
, et al
,
2020
, “
Quantum Approximate Optimization of the Long-Range Ising Model With a Trapped-Ion Quantum Simulator
,”
Proc. Natl. Acad Sci. U. S. A.
,
117
(
41
), pp.
25396
25401
.
14.
Pagano
,
G.
, et al
2021
, “
Correction to Supporting Information for Pagano, et al., Quantum Approximate Optimization of the Long-Range Ising Model With a Trapped-Ion Quantum Simulator
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
34
), p.
e2112935118
.
15.
Robin
,
C. E. P.
, and
Savage
,
M. J.
,
2023
, “
Quantum Simulations in Effective Model Spaces: Hamiltonian-Learning Variational Quantum Eigensolver Using Digital Quantum Computers and Application to the Lipkin-Meshkov-Glick Model
,”
Phys. Rev. C
,
108
(
2
), p.
024313
.
16.
Wang
,
J.
,
Paesani
,
S.
,
Santagati
,
R.
,
Knauer
,
S.
,
Gentile
,
A. A.
,
Wiebe
,
N.
,
Petruzzella
,
M.
, et al
,
2017
, “
Experimental Quantum Hamiltonian Learning
,”
Nat. Phys.
,
13
(
6
), pp.
551
555
.
17.
Soni
,
R.
,
Radhakrishnan
,
H.
,
Rosenow
,
B.
,
Alvarez
,
G.
, and
Del Maestro
,
A.
,
2024
, “
Topological and Magnetic Properties of the Interacting Bernevig-Hughes-Zhang Model
,”
Phys. Rev. B
,
109
(
24
), p.
245115
.
18.
Chan
,
K. S.
,
Pan
,
Y.-M.
, and
Lee
,
Y.-D.
,
2006
, “
Computation of Ni-Cr Phase Diagramvia a Combined First-Principles Quantum Mechanical and CALPHAD Approach
,”
Metall. Mater. Trans. A
,
37
(
7
), pp.
2039
2050
.
19.
Liu
,
Z.-K.
,
2009
, “
First-Principles Calculations and CALPHAD Modeling of Thermodynamics
,”
J. Phase Equilib. Diffus.
,
30
(
5
), pp.
517
534
.
20.
Otis
,
R.
, and
Liu
,
Z.-K.
,
2017
, “
Pycalphad: CALPHAD-Based Computational Thermodynamics in Python
,”
J. Open Res. Soft.
,
5
(
1
), p.
1
.
21.
Kattner
,
Ursula R
,
2016
, “
The Calphad Method and Its Role in Material and Process Development
,”
Tecnol Metal Mater Min.
,
13
(
1
), pp.
3
15
.
22.
Andersson
,
P. M.
,
Linusson
,
A.
,
Wold
,
S.
,
Sjöström
,
M.
,
Lundstedt
,
T.
, and
Nordén
,
B.
,
2002
, “Design of Small Libraries for Lead Exploration,”
Molecular Diversity in Drug Design
,
P. M.
Dean
, and
R. A.
Lewis
, eds.,
Dordrecht
,
Springer, Netherlands
, pp.
197
220
.
23.
Gregoire
,
J. M.
,
Zhou
,
L.
, and
Haber
,
J. A.
,
2023
, “
Combinatorial Synthesis for AI-Driven Materials Discovery
,”
Nat. Synth.
,
2
(
6
), pp.
493
504
.
24.
Liu
,
X.
,
Shen
,
Y.
,
Yang
,
R.
,
Zou
,
S.
,
Ji
,
X.
,
Shi
,
L.
,
Zhang
,
Y.
, et al
,
2012
, “
Inkjet Printing Assisted Synthesis of Multicomponent Mesoporous Metal Oxides for Ultrafast Catalyst Exploration
,”
Nano Lett.
,
12
(
11
), pp.
5733
5739
.
25.
Ludwig
,
A.
,
2019
, “
Discovery of New Materials Using Combinatorial Synthesis and High-Throughput Characterization of Thin-Film Materials Libraries Combined With Computational Methods
,”
npj Comput. Mater.
,
5
(
1
), pp.
1
7
.
26.
Potyrailo
,
R.
,
Rajan
,
K.
,
Stoewe
,
K.
,
Takeuchi
,
I.
,
Chisholm
,
B.
, and
Lam
,
H.
,
2011
, “
Combinatorial and High-Throughput Screening of Materials Libraries: Review of State of the Art
,”
ACS Comb. Sci.
,
13
(
6
), pp.
579
633
.
27.
Shinde
,
A.
,
Guevarra
,
D.
,
Liu
,
G.
,
Sharp
,
I. D.
,
Toma
,
F. M.
,
Gregoire
,
J. M.
, and
Haber
,
J. A.
,
2016
, “
Discovery of Fe–Ce Oxide/BiVO4 Photoanodes Through Combinatorial Exploration of Ni–Fe–Co–Ce Oxide Coatings
,”
ACS Appl. Mater. Interfaces
,
8
(
36
), pp.
23696
23705
.
28.
Clayton
,
A. D.
,
2023
, “
Recent Developments in Reactor Automation for Multistep Chemical Synthesis
,”
Chemistry–Methods
,
3
(
12
), p.
e202300021
.
29.
Li
,
Y.
,
Xia
,
L.
,
Fan
,
Y.
,
Wang
,
Q.
, and
Hu
,
M.
,
2022
, “
Recent Advances in Autonomous Synthesis of Materials
,”
ChemPhysMater
,
1
(
2
), pp.
77
85
.
30.
Wang
,
Z.
,
Zhao
,
W.
,
Hao
,
G.-F.
, and
Song
,
B.-A.
,
2020
, “
Automated Synthesis: Current Platforms and Further Needs
,”
Drug Discov. Today
,
25
(
11
), pp.
2006
2011
.
31.
Szymanski
,
N. J.
,
Zeng
,
Y.
,
Huo
,
H.
,
Bartel
,
C. J.
,
Kim
,
H.
, and
Ceder
,
G.
,
2021
, “
Toward Autonomous Design and Synthesis of Novel Inorganic Materials
,”
Mater. Horiz.
,
8
(
8
), pp.
2169
2198
.
32.
Szymanski
,
N. J.
,
Rendy
,
B.
,
Fei
,
Y.
,
Kumar
,
R. E.
,
He
,
T.
,
Milsted
,
D.
,
McDermott
,
M. J.
, et al
,
2023
, “
An Autonomous Laboratory for the Accelerated Synthesis of Novel Materials
,”
Nature
,
624
(
7990
), pp.
86
91
.
33.
Stach
,
E.
,
DeCost
,
B.
,
Kusne
,
A. G.
,
Hattrick-Simpers
,
J.
,
Brown
,
K. A.
,
Reyes
,
K. G.
,
Schrier
,
J.
, et al
,
2021
, “
Autonomous Experimentation Systems for Materials Development: A Community Perspective
,”
Matter
,
4
(
9
), pp.
2702
2726
.
34.
Helton
,
J. C.
, and
Davis
,
F. J.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
35.
Garnett
,
R.
,
2023
,
Bayesian Optimization
,
Cambridge University Press
,
Cambridge, UK
.
36.
Shahriari
,
B.
,
Swersky
,
K.
,
Wang
,
Z.
,
Adams
,
R. P.
, and
de Freitas
,
N.
,
2016
, “
Taking the Human Out of the Loop: A Review of Bayesian Optimization
,”
Proc. IEEE
,
104
(
1
), pp.
148
175
.
37.
Balandat
,
M.
,
Karrer
,
B.
,
Jiang
,
D. R.
,
Daulton
,
S.
,
Letham
,
B.
,
Wilson
,
A. G.
, and
Bakshy
,
E.
,
2020
, “
BOTORCH: A Framework for Efficient Monte-Carlo Bayesian Optimization
,”
Proceedings of the 34th International Conference on Neural Information Processing Systems; NIPS ‘20
,
Vancouver BC Canada
,
December 6 - 12, 2020
.
38.
Ziatdinov
,
M. A.
,
Liu
,
Y.
,
Morozovska
,
A. N.
,
Eliseev
,
E. A.
,
Zhang
,
X.
,
Takeuchi
,
I.
, and
Kalinin
,
S. V.
,
2022
, “
Hypothesis Learning in Automated Experiment: Application to Combinatorial Materials Libraries
,”
Adv. Mater.
,
34
(
20
), p.
2201345
.
39.
Jacobs
,
R.
,
Goins
,
P. E.
, and
Morgan
,
D.
,
2023
, “
Role of Multifidelity Data in Sequential Active Learning Materials Discovery Campaigns: Case Study of Electronic Bandgap
,”
Mach. Learn.: Sci. Technol.
,
4
(
4
), p.
045060
.
40.
Sanchez
,
S. L.
,
Foadian
,
E.
,
Ziatdinov
,
M.
,
Yang
,
J.
,
Kalinin
,
S. V.
,
Liu
,
Y.
, and
Ahmadi
,
M.
,
2024
, “
Physics-Driven Discovery and Bandgap Engineering of Hybrid Perovskites
,”
Digit. Discov.
,
3
(
8
), pp.
1577
1590
.
41.
Liu
,
Y.
,
Morozovska
,
A. N.
,
Eliseev
,
E. A.
,
Kelley
,
K. P.
,
Vasudevan
,
R.
,
Ziatdinov
,
M.
, and
Kalinin
,
S. V.
,
2023
, “
Autonomous Scanning Probe Microscopy With Hypothesis Learning: Exploring the Physics of Domain Switching in Ferroelectric Materials
,”
Patter
,
4
(
3
), p.
100704
.
42.
Jones
,
D. R.
,
Schonlau
,
M.
, and
Welch
,
W. J.
,
1998
, “
Efficient Global Optimization of Expensive Black-Box Functions
,”
J. Glob. Optim.
,
13
(
4
), pp.
455
492
.
43.
Biswas
,
A.
, and
Hoyle
,
C.
,
2021
, “
An Approach to Bayesian Optimization for Design Feasibility Check on Discontinuous Black-Box Functions
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031716
.
44.
Quadrianto
,
N.
,
Kersting
,
K.
, and
Xu
,
Z.
,
2010
, “Gaussian Process,”
Encyclopedia of Machine Learning
,
C.
Sammut
, and
G. I.
Webb
, eds.,
Springer US
,
Boston, MA
, pp.
428
439
.
45.
Deringer
,
V. L.
,
Bartók
,
A. P.
,
Bernstein
,
N.
,
Wilkins
,
D. M.
,
Ceriotti
,
M.
, and
Csányi
,
G.
,
2021
, “
Gaussian Process Regression for Materials and Molecules
,”
Chem. Rev.
,
121
(
16
), pp.
10073
10141
.
46.
Noack
,
M. M.
,
Doerk
,
G. S.
,
Li
,
R.
,
Streit
,
J. K.
,
Vaia
,
R. A.
,
Yager
,
K. G.
, and
Fukuto
,
M.
,
2020
, “
Autonomous Materials Discovery Driven by Gaussian Process Regression With Inhomogeneous Measurement Noise and Anisotropic Kernels
,”
Sci. Rep.
,
10
(
1
), p.
17663
.
47.
Brochu
,
E.
,
Cora
,
V. M.
, and
de Freitas
,
N.
,
2010
, “
A Tutorial on Bayesian Optimization of Expensive Cost Functions, With Application to Active User Modeling and Hierarchical Reinforcement Learning
,” arXiv.
48.
Cox
,
D. D.
, and
John
,
S.
,
1992
, “
A Statistical Method for Global Optimization
,”
IEEE International Conference on Systems, Man, and Cybernetics
,
Chicago, IL
,
Oct. 18–21
, Vol. 2, pp.
1241
1246
.
49.
Jones
,
D. R.
,
2001
, “
A Taxonomy of Global Optimization Methods Based on Response Surfaces
,”
J. Glob. Optim.
,
21
(
4
), pp.
345
383
.
50.
Kushner
,
H. J.
,
1964
, “
A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise
,”
ASME J. Basic Eng.
,
86
(
1
), pp.
97
106
.
51.
Ueno
,
T.
,
Rhone
,
T. D.
,
Hou
,
Z.
,
Mizoguchi
,
T.
, and
Tsuda
,
K.
,
2016
, “
COMBO: An Efficient Bayesian Optimization Library for Materials Science
,”
Mater. Discovery
,
4
, pp.
18
21
.
52.
Kalinin
,
S. V.
,
Ziatdinov
,
M.
, and
Vasudevan
,
R. K.
,
2020
, “
Guided Search for Desired Functional Responses via Bayesian Optimization of Generative Model: Hysteresis Loop Shape Engineering in Ferroelectrics
,”
J. Appl. Phys.
,
128
(
2
), p.
024102
.
53.
Biswas
,
A.
,
Morozovska
,
A. N.
,
Ziatdinov
,
M.
,
Eliseev
,
E. A.
, and
Kalinin
,
S. V.
,
2021
, “
Multi-Objective Bayesian Optimization of Ferroelectric Materials With Interfacial Control for Memory and Energy Storage Applications
,”
J. Appl. Phys.
,
130
(
20
), p.
204102
.
54.
Morozovska
,
A. N.
,
Eliseev
,
E. A.
,
Biswas
,
A.
,
Shevliakova
,
H. V.
,
Morozovsky
,
N. V.
, and
Kalinin
,
S. V.
,
2022
, “
Chemical Control of Polarization in Thin Strained Films of a Multiaxial Ferroelectric: Phase Diagrams and Polarization Rotation
,”
Phys. Rev. B
,
105
(
9
), p.
094112
.
55.
Morozovska
,
A. N.
,
Eliseev
,
E. A.
,
Biswas
,
A.
,
Morozovsky
,
N. V.
, and
Kalinin
,
S. V.
,
2021
, “
Effect of Surface Ionic Screening on Polarization Reversal and Phase Diagrams in Thin Antiferroelectric Films for Information and Energy Storage
,”
Phys. Rev. Appl.
,
16
(
4
), p.
044053
.
56.
Tao
,
S.
,
van Beek
,
A.
,
Apley
,
D. W.
, and
Chen
,
W.
,
2021
, “
Multi-Model Bayesian Optimization for Simulation-Based Design
,”
ASME J. Mech. Des.
,
143
(
11
), p.
111701
.
57.
Griffiths
,
R.-R.
, and
Hernández-Lobato
,
J. M.
,
2020
, “
Constrained Bayesian Optimization for Automatic Chemical Design Using Variational Autoencoders
,”
Chem. Sci.
,
11
(
2
), pp.
577
586
.
58.
Burger
,
B.
,
Maffettone
,
P. M.
,
Gusev
,
V. V.
,
Aitchison
,
C. M.
,
Bai
,
Y.
,
Wang
,
X.
,
Li
,
X.
, et al
,
2020
, “
A Mobile Robotic Chemist
,”
Nature
,
583
(
7815
), pp.
237
241
.
59.
Harris
,
S. B.
,
Biswas
,
A.
,
Yun
,
S. J.
,
Roccapriore
,
K. M.
,
Rouleau
,
C. M.
,
Puretzky
,
A. A.
,
Vasudevan
,
R. K.
,
Geohegan
,
D. B.
, and
Xiao
,
K.
, “
Autonomous Synthesis of Thin Film Materials With Pulsed Laser Deposition Enabled by In Situ Spectroscopy and Automation
,”
Small Methods
,
8
(
9
), p.
2301763
.
60.
Kusne
,
A. G.
,
Yu
,
H.
,
Wu
,
C.
,
Zhang
,
H.
,
Hattrick-Simpers
,
J.
,
DeCost
,
B.
,
Sarker
,
S.
, et al
,
2020
, “
ON-the-Fly Closed-Loop Materials Discovery via Bayesian Active Learning
,”
Nat. Commun.
,
11
(
1
), p.
5966
.
61.
Dave
,
A.
,
Mitchell
,
J.
,
Burke
,
S.
,
Lin
,
H.
,
Whitacre
,
J.
, and
Viswanathan
,
V.
,
2022
, “
Autonomous Optimization of Non-Aqueous Li-Ion Battery Electrolytes via Robotic Experimentation and Machine Learning Coupling
,”
Nat. Commun.
,
13
(
1
), p.
5454
.
62.
Kanarik
,
K. J.
,
Osowiecki
,
W. T.
,
Lu
,
Y.
,
(Joe) Talukder
,
D.
,
Roschewsky
,
N.
,
Park
,
S. N.
,
Kamon
,
M.
,
Fried
,
D. M.
, and
Gottscho
,
R. A.
,
2023
, “
Human–Machine Collaboration for Improving Semiconductor Process Development
,”
Nature
,
616
(
7958
), pp.
707
711
.
63.
Biswas
,
A.
,
Liu
,
Y.
,
Creange
,
N.
,
Liu
,
Y.-C.
,
Jesse
,
S.
,
Yang
,
J.-C.
,
Kalinin
,
S. V.
,
Ziatdinov
,
M. A.
, and
Vasudevan
,
R. K.
,
2024
, “
A Dynamic Bayesian Optimized Active Recommender System for Curiosity-Driven Partially Human-in-the-Loop Automated Experiments
,”
npj Comput. Mater.
,
10
(
1
), pp.
1
12
.
64.
Biswas
,
A.
,
Liu
,
Y.
,
Ziatdinov
,
M.
,
Liu
,
Y.-C.
,
Jesse
,
S.
,
Yang
,
J.-C.
,
Kalinin
,
S.
, and
Vasudevan
,
R.
,
2023
, “
A Multi-Objective Bayesian Optimized Human Assessed Multi-Target Generated Spectral Recommender System for Rapid Pareto Discoveries of Material Properties
,”
Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3B: 49th Design Automation Conference (DAC)
,
Boston, MA
.
65.
Liu
,
Y.
,
Ziatdinov
,
M. A.
,
Vasudevan
,
R. K.
, and
Kalinin
,
S. V.
,
2023
, “
Explainability and Human Intervention in Autonomous Scanning Probe Microscopy
,”
Patterns
,
4
(
11
), p.
100858
.
66.
Kalinin
,
S. V.
,
Liu
,
Y.
,
Biswas
,
A.
,
Duscher
,
G.
,
Pratiush
,
U.
,
Roccapriore
,
K.
,
Ziatdinov
,
M.
, and
Vasudevan
,
R.
,
2024
, “
Human-in-the-Loop: The Future of Machine Learning in Automated Electron Microscopy
,”
Microsc. Today
,
32
(
1
), pp.
35
41
.
67.
Fare
,
C.
,
Fenner
,
P.
,
Benatan
,
M.
,
Varsi
,
A.
, and
Pyzer-Knapp
,
E. O.
,
2022
, “
A Multi-Fidelity Machine Learning Approach to High Throughput Materials Screening
,”
npj Comput. Mater.
,
8
(
1
), pp.
1
9
.
68.
Gantzler
,
N.
,
Deshwal
,
A.
,
Rao Doppa
,
J.
, and
Simon
,
C. M.
,
2023
, “
Multi-Fidelity Bayesian Optimization of Covalent Organic Frameworks for Xenon/Krypton Separations
,”
Digit. Discovery
,
2
(
6
), pp.
1937
1956
.
69.
Ferguson
,
A. L.
, and
Brown
,
K. A.
,
2022
, “
Data-Driven Design and Autonomous Experimentation in Soft and Biological Materials Engineering
,”
Annu. Rev. Chem. Biomol. Eng.
,
13
(
1
), pp.
25
44
.
70.
Kempner
,
M.
, 2023, “
Multi-Fidelity Bayesian Optimization for Efficient Materials Design
,”
Thesis
, George W. Woodruff School of Mechanical Engineering,
Georgia Institute of Technology
,
Atlanta, GA
.
71.
Tran
,
A.
,
Wildey
,
T.
, and
McCann
,
S.
,
2020
, “
SMF-BO-2CoGP: A Sequential Multi-Fidelity Constrained Bayesian Optimization Framework for Design Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
3
), p.
031007
.
72.
Tran
,
A.
,
Tranchida
,
J.
,
Wildey
,
T.
, and
Thompson
,
A. P.
,
2020
, “
Multi-Fidelity Machine-Learning With Uncertainty Quantification and Bayesian Optimization for Materials Design: Application to Ternary Random Alloys
,”
J. Chem. Phys.
,
153
(
7
), p.
074705
.
73.
Palizhati
,
A.
,
Aykol
,
M.
,
Suram
,
S.
,
Hummelshøj
,
J. S.
, and
Montoya
,
J. H.
,
2021
, “
Multi-Fidelity Sequential Learning for Accelerated Materials Discovery
,”
ChemRxiv.
74.
Di Fiore
,
F.
,
Maggiore
,
P.
, and
Mainini
,
L.
,
2021
, “
Multifidelity Domain-Aware Learning for the Design of Re-Entry Vehicles
,”
Struct. Multidisc. Optim.
,
64
(
5
), pp.
3017
3035
.
75.
Di Fiore
,
F.
, and
Mainini
,
L.
,
2024
, “
Physics-Aware Multifidelity Bayesian Optimization: A Generalized Formulation
,”
Comput. Struct.
,
296
, p.
107302
.
76.
GPax
, “Gaussian Processes for Experimental Sciences—GPax 0.1.4 Documentation,” https://gpax.readthedocs.io/en/latest/index.html, Accessed January 18, 2024.
77.
van Ravenzwaaij
,
D.
,
Cassey
,
P.
, and
Brown
,
S. D.
,
2018
, “
A Simple Introduction to Markov Chain Monte–Carlo Sampling
,”
Psychon. Bull. Rev.
,
25
(
1
), pp.
143
154
.
78.
Shu
,
L.
,
Jiang
,
P.
, and
Wang
,
Y.
,
2021
, “
A Multi-Fidelity Bayesian Optimization Approach Based on the Expected Further Improvement
,”
Struct. Multidisc. Optim.
,
63
(
4
), pp.
1709
1719
.
79.
Ziatdinov
,
M. A.
,
Ghosh
,
A.
, and
Kalinin
,
S. V.
,
2022
, “
Physics Makes the Difference: Bayesian Optimization and Active Learning via Augmented Gaussian Process
,”
Mach. Learn.: Sci. Technol.
,
3
(
1
), p.
015003
.
80.
Valleti
,
M.
,
Vlcek
,
L.
,
Ziatdinov
,
M.
,
Vasudevan
,
R. K.
, and
Kalinin
,
S. V.
,
2020
, “
Reconstruction and Uncertainty Quantification of Lattice Hamiltonian Model Parameters From Observations of Microscopic Degrees of Freedom
,”
J. Appl. Phys.
,
128
(
21
), p.
214103
.
81.
Valleti
,
S. M. P.
,
Zou
,
Q.
,
Xue
,
R.
,
Vlcek
,
L.
,
Ziatdinov
,
M.
,
Vasudevan
,
R.
,
Fu
,
M.
, et al
,
2021
, “
Bayesian Learning of Adatom Interactions From Atomically Resolved Imaging Data
,”
ACS Nano
,
15
(
6
), pp.
9649
9657
.
82.
Kalinin
,
S. V.
,
Valleti
,
M.
,
Vasudevan
,
R. K.
, and
Ziatdinov
,
M.
,
2020
, “
Exploration of Lattice Hamiltonians for Functional and Structural Discovery via Gaussian Process-Based Exploration–Exploitation
,”
J. Appl. Phys.
,
128
(
16
), p.
164304
.
You do not currently have access to this content.