Abstract

Robotic technology can benefit disassembly operations by reducing human operators' workload and assisting them with handling hazardous materials. Safety consideration and prediction of the human movement are priorities in close collaboration between humans and robots. The point-by-point forecasting of human hand motion, which forecasts one point at each time, does not provide enough information on human movement due to errors between the actual movement and the predicted value. This study provides a range of possible hand movements to increase safety. It applies three machine learning techniques, including long short-term memory (LSTM), gated recurrent unit (GRU), and Bayesian neural network (BNN) combined with bagging and Monte Carlo dropout (MCD), namely, LSTM-bagging, GRU-bagging, and BNN-MCD to predict the possible movement range. The study uses an inertial measurement unit (IMU) dataset collected from the disassembly of desktop computers by several participants to show the application of the proposed method.

References

1.
Liao
,
H. Y.
,
Chen
,
Y.
,
Hu
,
B.
, and
Behdad
,
S.
,
2023
, “
Optimization-Based Disassembly Sequence Planning Under Uncertainty for Human-Robot Collaboration
,”
ASME J. Mech. Des.
,
145
(
2
), p.
022001
.
2.
Liau
,
Y. Y.
, and
Ryu
,
K.
,
2021
, “
Status Recognition Using Pre-Trained YOLOv5 for Sustainable Human-Robot Collaboration (HRC) System in Mold Assembly
,”
Sustainability
,
13
(
21
), p.
12044
.
3.
Liu
,
Z.
,
Liu
,
Q.
,
Xu
,
W.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Chen
,
J.
,
2019
, “
Deep Learning-Based Human Motion Prediction Considering Context Awareness for Human-Robot Collaboration in Manufacturing
,”
Procedia CIRP
,
83
, pp.
272
278
.
4.
Wang
,
J.
, and
Shen
,
L.
,
2021
, “
Semi-Adaptable Human Hand Motion Prediction Based on Neural Networks and Kalman Filter
,”
J. Phys. Conf. Ser.
,
2029
(
1
), p.
012091
.
5.
Kaipa
,
K. N.
,
Morato
,
C. W.
, and
Gupta
,
S. K.
,
2018
, “
Design of Hybrid Cells to Facilitate Safe and Efficient Human–Robot Collaboration During Assembly Operations
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
3
), p.
031004
.
6.
Morato
,
C.
,
Kaipa
,
K. N.
,
Zhao
,
B.
, and
Gupta
,
S. K.
,
2014
, “
Toward Safe Human Robot Collaboration by Using Multiple Kinects Based Real-Time Human Tracking
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
1
), p.
011006
.
7.
Ye
,
Z.
,
Wu
,
H.
, and
Jia
,
J.
,
2021
, “
Human Motion Modeling With Deep Learning: A Survey
,”
AI Open
,
3
, pp.
35
39
.
8.
Wang
,
Y.
,
Ye
,
X.
,
Yang
,
Y.
, and
Zhang
,
W.
,
2017
, “
Collision-Free Trajectory Planning in Human-Robot Interaction Through Hand Movement Prediction From Vision
,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
,
Birgmingham, UK
,
Nov. 15–17
, IEEE, pp.
305
310
.
9.
Li
,
Q.
,
Chalvatzaki
,
G.
,
Peters
,
J.
, and
Wang
,
Y.
,
2021
, “
Directed Acyclic Graph Neural Network for Human Motion Prediction
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
, IEEE, pp.
3197
3204
.
10.
Martinez
,
J.
,
Black
,
M. J.
, and
Romero
,
J.
,
2017
, “
On Human Motion Prediction Using Recurrent Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
,
Honolulu, HI
,
July 21–26
, pp.
2891
2900
.
11.
Pavllo
,
D.
,
Feichtenhofer
,
C.
,
Auli
,
M.
, and
Grangier
,
D.
,
2020
, “
Modeling Human Motion With Quaternion-Based Neural Networks
,”
Int. J. Comput. Vision
,
128
(
4
), pp.
855
872
.
12.
Zheng
,
P.
,
Wieber
,
P.-B.
,
Baber
,
J.
, and
Aycard
,
O.
,
2022
, “
Human Arm Motion Prediction for Collision Avoidance in a Shared Workspace
,”
Sensors
,
22
(
18
), pp.
6951
.
13.
Wang
,
Y.
,
Yang
,
Y.
,
Zhao
,
B.
,
Qi
,
X.
,
Hu
,
Y.
,
Li
,
B.
,
Sun
,
L.
,
Zhang
,
L.
, and
Meng
,
M. Q.-H.
,
2021
, “
Variable Admittance Control Based on Trajectory Prediction of Human Hand Motion for Physical Human-Robot Interaction
,”
Appl. Sci.
,
11
(
12
), pp.
5651
.
14.
Zhang
,
J.
,
Liu
,
H.
,
Chang
,
Q.
,
Wang
,
L.
, and
Gao
,
R. X.
,
2020
, “
Recurrent Neural Network for Motion Trajectory Prediction in Human-Robot Collaborative Assembly
,”
CIRP Ann.
,
69
(
1
), pp.
9
12
.
15.
Gril
,
L.
,
Wedenig
,
P.
,
Torkar
,
C.
, and
Kleb
,
U.
,
2023
, “
A Tensor-Based Regression Approach for Human Motion Prediction
,”
Qual. Reliab. Eng. Int.
,
39
(
2
), pp.
481
499
.
16.
Liao
,
H.
,
Zheng
,
M.
,
Hu
,
B.
, and
Behdad
,
S.
,
2022
, “
Human Hand Motion Prediction in Disassembly Operations
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
,
p. V005T05A021, Paper No. DETC2022-89967
.
17.
Burks
,
L.
,
Ray
,
H. M.
,
McGinley
,
J.
,
Vunnam
,
S.
, and
Ahmed
,
N.
,
2023
, “
HARPS: An Online POMDP Framework for Human-Assisted Robotic Planning and Sensing
,”
IEEE Trans. Rob.
,
39
(
4
), pp.
3024
3042
.
18.
Sajedi
,
S.
,
Liu
,
W.
,
Eltouny
,
K.
,
Behdad
,
S.
,
Zheng
,
M.
, and
Liang
,
X.
,
2022
, “
Uncertainty-Assisted Image-Processing for Human-Robot Close Collaboration
,”
IEEE Robot. Autom. Mag.
,
7
(
2
), pp.
4236
4243
.
19.
Furnari
,
A.
,
Battiato
,
S.
, and
Maria Farinella
,
G.
,
2018
, “
Leveraging Uncertainty to Rethink Loss Functions and Evaluation Measures for Egocentric Action Anticipation
,”
Proceedings of the European Conference on Computer Vision (ECCV) Workshops
,
Munich, Germany
,
Sept. 8–14
, pp
389
405
.
20.
Abu Farha
,
Y.
, and
Gall
,
J.
,
2019
, “
Uncertainty-Aware Anticipation of Activities
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops
,
Seoul, South Korea
,
Oct. 27–28
, pp.
1197
1204
.
21.
Casalino
,
A.
,
Mazzocca
,
E.
,
Di Giorgio
,
M. G.
,
Zanchettin
,
A. M.
, and
Rocco
,
P.
,
2019
, “
Task Scheduling for Human-Robot Collaboration With Uncertain Duration of Tasks: A Fuzzy Approach
,”
2019 7th International Conference on Control, Mechatronics and Automation (ICCMA)
,
TU Delft, Netherlands
,
Nov. 6–8
, IEEE, pp.
90
97
.
22.
Liu
,
W.
,
Liang
,
X.
, and
Zheng
,
M.
,
2023
, “
Task-Constrained Motion Planning Considering Uncertainty-Informed Human Motion Prediction for Human–Robot Collaborative Disassembly
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
2056
2063
.
23.
Xu
,
J.
,
Chen
,
X.
,
Lan
,
X.
, and
Zheng
,
N.
,
2021
, “
Probabilistic Human Motion Prediction via a Bayesian Neural Network
,”
2021 IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
, IEEE, pp.
3190
3196
.
24.
Yu
,
W.
,
Liu
,
R.
,
Zhou
,
D.
,
Zhang
,
Q.
, and
Wei
,
X.
,
2021
, “
An Improved GRU Network for Human Motion Prediction
,”
2021 IEEE 7th International Conference on Virtual Reality (ICVR)
,
Foshan, China
,
May 20–22
, IEEE, pp.
427
433
.
25.
Ren
,
B.
,
Zhang
,
Z.
,
Zhang
,
C.
, and
Chen
,
S.
,
2022
, “
Motion Trajectories Prediction of Lower Limb Exoskeleton Based on Long Short-Term Memory (LSTM) Networks
,”
Actuators
,
11
(
3
), p.
73
.
26.
Yu
,
Y.
,
Tian
,
N.
,
Hao
,
X. Y.
,
Ma
,
T.
, and
Yang
,
C.
,
2022
, “
Human Motion Prediction With Gated Recurrent Unit Model of Multi-Dimensional Input
,”
Appl. Intell.
,
52
(
6
), pp.
1
13
.
27.
Forti
,
V.
,
Baldé
,
C. P.
,
Kuehr
,
R.
, and
Bel
,
G.
,
2020
, “
The Global E-Waste Monitor 2020
,”
United Nations University (UNU), International Telecommunication Union (ITU) & International Solid Waste Association (ISWA)
,
Bonn/Geneva/Rotterdam
, 120.
28.
Zuidwijk
,
R.
, and
Krikke
,
H.
,
2008
, “
Strategic Response to EEE Returns: Product Eco-Design or New Recovery Processes?
,”
Eur. J. Oper. Res.
,
191
(
3
), pp.
1206
1222
.
29.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
30.
Paszke
,
A.
,
Gross
,
S.
,
Massa
,
F.
,
Lerer
,
A.
,
Bradbury
,
J.
,
Chanan
,
G.
,
Killeen
,
T.
,
Lin
,
Z.
,
Gimelshein
,
N.
, and
Antiga
,
L.
,
2019
, “
Pytorch: An Imperative Style, High-Performance Deep Learning Library
,”
Adv. Neural Inf. Process. Syst.
,
32
(
721
), pp.
8026
8037
. https://dl.acm.org/doi/10.5555/3454287.3455008
31.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.
32.
Husejinovic
,
A.
,
2020
, “
Credit Card Fraud Detection Using Naive Bayesian and C4. 5 Decision Tree Classifiers
,”
Periodicals of Engineering and Natural Sciences
,
8
(
1
), pp.
1
5
.
33.
Hsiao
,
H. Y.
, and
Chiang
,
K. N.
,
2021
, “
AI-Assisted Reliability Life Prediction Model for Wafer-Level Packaging Using the Random Forest Method
,”
J. Mech.
,
37
, pp.
28
36
.
34.
Huang
,
P.
,
Li
,
Y.
,
Lv
,
X.
,
Chen
,
W.
, and
Liu
,
S.
,
2020
, “
Recognition of Common Non-Normal Walking Actions Based on Relief-F Feature Selection and Relief-Bagging-SVM
,”
Sensors
,
20
(
5
), pp.
1447
.
35.
Chen
,
P.
,
Wang
,
X.
,
Wang
,
M.
,
Yang
,
X.
,
Guo
,
S.
,
Jiang
,
C.
,
Cui
,
G.
, and
Kong
,
L.
,
2021
, “
Multi-View Real-Time Human Motion Recognition Based on Ensemble Learning
,”
IEEE Sens. J.
,
21
(
18
), pp.
20335
20347
.
36.
Chen
,
P.
,
Guo
,
S.
,
Li
,
H.
,
Wang
,
X.
,
Cui
,
G.
,
Jiang
,
C.
, and
Kong
,
L.
,
2021
, “
Through-Wall Human Motion Recognition Based on Transfer Learning and Ensemble Learning
,”
IEEE Geosci. Remote Sens. Lett.
,
19
, pp.
1
5
.
37.
Cho
,
K.
,
Van Merriënboer
,
B.
,
Bahdanau
,
D.
, and
Bengio
,
Y.
,
2014
, “
On the Properties of Neural Machine Translation: Encoder-Decoder Approaches
,”
arXiv
. https://arxiv.org/abs/1409.1259
38.
Graves
,
A.
, and
Schmidhuber
,
J.
,
2005
, “
Framewise Phoneme Classification With Bidirectional LSTM and Other Neural Network Architectures
,”
Neural Netw.
,
18
(
5–6
), pp.
602
610
.
39.
Cheng
,
W.
,
Li
,
J.
,
Xiao
,
H.-C.
, and
Ji
,
L.
,
2022
, “
Combination Predicting Model of Traffic Congestion Index in Weekdays Based on LightGBM-GRU
,”
Sci. Rep.
,
12
(
1
), pp.
2912
.
40.
Ghalamzan-E
,
A.
,
2021
, “
Learning Needle Insertion From Sample Task Executions
,”
arXiv
. https://arxiv.org/abs/2103.07938
41.
Petneházi
,
G.
,
2019
, “
Recurrent Neural Networks for Time Series Forecasting
,”
arXiv
. https://arxiv.org/abs/1901.00069
42.
Jospin
,
L. V.
,
Laga
,
H.
,
Boussaid
,
F.
,
Buntine
,
W.
, and
Bennamoun
,
M.
,
2022
, “
Hands-On Bayesian Neural Networks—A Tutorial for Deep Learning Users
,”
IEEE Comput. Intell. Mag.
,
17
(
2
), pp.
29
48
.
43.
Lin
,
X.
,
Zhen
,
H.-L.
,
Li
,
Z.
,
Zhang
,
Q.
, and
Kwong
,
S.
,
2018
, “
A Batched Scalable Multi-Objective Bayesian Optimization Algorithm
.”
arXiv preprint
. https://arxiv.org/abs/1811.01323
44.
Maiti
,
S.
, and
Tiwari
,
R. K.
,
2010
, “
Neural Network Modeling and an Uncertainty Analysis in Bayesian Framework: A Case Study From the KTB Borehole Site
,”
J. Geophys. Res. Solid Earth
,
115
(
B10
), pp.
B10208-1
B10208-28
.
45.
Lee
,
S.
,
Kim
,
H.
, and
Lee
,
J.
,
2022
, “
Graddiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
45
(
2
), pp.
2645
2651
.
46.
Gal
,
Y.
, and
Ghahramani
,
Z.
,
2016
, “
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
,”
International Conference on Machine Learning
,
New York City
,
June 19–24
, pp.
1050
1059
.
47.
Wang
,
K.
,
Du
,
H.
,
Jia
,
R.
, and
Jia
,
H.
,
2022
, “
Performance Comparison of Bayesian Deep Learning Model and Traditional Bayesian Neural Network in Short-Term PV Interval Prediction
,”
Sustainability
,
14
(
19
), p.
12683
.
48.
Wen
,
Y.
,
Rahman
,
M. F.
,
Xu
,
H.
, and
Tseng
,
T.-L. B.
,
2022
, “
Recent Advances and Trends of Predictive Maintenance From Data-Driven Machine Prognostics Perspective
,”
Measurement
,
187
, pp.
110276
.
49.
Kendall
,
A.
, and
Gal
,
Y.
,
2017
, “
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision?
Adv. Neural Inf. Process. Syst.
,
30
, pp.
5580
5590
. https://dl.acm.org/doi/10.5555/3295222.3295309
50.
Kulshrestha
,
S.
, and
Patel
,
S.
,
2021
, “
An Efficient Host Overload Detection Algorithm for Cloud Data Center Based on Exponential Weighted Moving Average
,”
Int. J. Commun. Syst.
,
34
(
4
), pp.
e4708
.
51.
Bishop
,
C. M.
,
2006
,
Pattern Recognition and Machine Learning
,
Springer
,
New York
.
52.
Hu
,
J.
,
Zhuang
,
Y.
,
Yang
,
J.
,
Lei
,
L.
,
Huang
,
M.
,
Zhu
,
R.
, and
Dong
,
S.
,
2018
, “
PRNN: A Recurrent Neural Network Based Approach for Customer Churn Prediction in Telecommunication Sector
,”
2018 IEEE International Conference on Big Data (Big Data)
,
Los Alamitos, CA
,
July 2–7
, IEEE, pp.
4081
4085
.
You do not currently have access to this content.