Despite extensive research and rapid increase of computing power, free-form object matching still remains a challenging problem in CAD/CAM areas. In this paper, various object features are discussed, and matching methods which use these features are introduced along with robust computational algorithms for umbilical points and intrinsic wireframes. The similarity of matched objects is assessed with three proposed tests. Each algorithm is demonstrated with examples.
Issue Section:
Research Papers
1.
Campbell
, R. J.
, and Flynn
, P. J.
, 2001
, “A Survey of Free-Form Object Representation and Recognition Techniques
,” Comput. Vis. Image Underst.
, 81
(2
), pp. 166
–210
.2.
Besl, P. J., 1990, Machine Vision for Three-Dimensional Scenes, Academic Press, pp. 25–71.
3.
Prokop
, R. J.
, and Reeves
, A. P.
, 1992
, “A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition
,” Graph. Models Image Process.
, 54
(2
), pp. 438
–460
.4.
Sharp
, G. C.
, Lee
, S. W.
, and Wehe
, D. K.
, 2002
, “ICP Registration Using Invariant Features
,” IEEE Trans. Pattern Anal. Mach. Intell.
, 24
(1
), pp. 90
–102
.5.
Yamany
, S. M.
, and Farag
, A. A.
, 2002
, “Surface Signatures: An Orientation Independent Free-Form Surface Representation Scheme for the Purpose of Objects Registration and Matching
,” IEEE Trans. Pattern Anal. Mach. Intell.
, 24
(8
), pp. 1105
–1120
.6.
Thirion, J.-P., 1994, “Extremal Points: Definition and Application to 3D Image Registration,” IEEE Proceedings Computer Vision and Pattern Recognition, IEEE Computer Society, Seattle, WA, pp. 587–592.
7.
Chua
, C. S.
, and Jarvis
, R.
, 1996
, “3D Free-Form Surface Registration and Object Recognition
,” Int. J. Comput. Vis.
, 17
(1
), pp. 77
–99
.8.
Ko, K. H., Maekawa, T., Patrikalakis, N. M., Masuda, H., and Wolter, F.-E., 2003, “Shape Intrinsic Fingerprints for Free-Form Object Matching,” Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, G. Elber, and V. Shapiro, eds., ACM Press, New York, pp. 196–207.
9.
Ko, K. H., Maekawa, T., Patrikalakis, N. M., Masuda, H., and Wolter, F.-E., 2003, “Shape Intrinsic Watermarks for 3D Solids,” Proceedings of the 2003 NSF Design, Service and Manufacturing Grantees and Research Conference, Birmingham, Alabama.
10.
Struik, D. J., 1950, Lectures on Classical Differential Geometry. Addison-Wesley, Cambridge, MA.
11.
Maekawa
, T.
, and Patrikalakis
, N. M.
, 1994
, “Interrogation of Differential Geometry Properties for Design and Manufacture
,” Visual Comput.
, 10
(4
), pp. 216
–237
.12.
Maekawa
, T.
, Wolter
, F.-E.
, and Patrikalakis
, N. M.
, 1996
, “Umbilics and Lines of Curvature for Shape Interrogation
,” Comput. Aided Geom. Des.
, 13
(2
), pp. 133
–161
.13.
Berry
, M. V.
, and Hannay
, J. H.
, 1977
, “Umbilic Points on Gaussian Random Surfaces
,” J. Phys. A
, 10
(11
), pp. 1809
–1821
.14.
Patrikalakis, N. M., and Maekawa, T., 2002, Shape Interrogation for Computer Aided Design and Manufacturing, Springer-Verlag, Heidelberg.
15.
Dokken
, T.
, 1985
, “Finding Intersections of B-spline Represented Geometries Using Recursive Subdivision Techniques
,” Comput. Aided Geom. Des.
, 2
(1–3
), pp. 189
–195
.16.
Samet
, H.
, 1988
, “Hierarchical Data Structures and Algorithms for Computer Graphics. I. Fundamentals
,” IEEE Comput. Graphics Appl.
, 8
, pp. 48
–68
.17.
Sherbrooke
, E. C.
, and Patrikalakis
, N. M.
, 1993
, “Computation of the Solutions of Nonlinear Polynomial Systems
,” Comput. Aided Geom. Des.
, 10
(5
), pp. 379
–405
.18.
Maekawa
, T.
, and Chalfant
, J. S.
, 1998
, “Computation of Inflection Lines and Geodesics on Developable Surfaces
,” Mathematical Engineering in Industry
, 7
(2
), pp. 251
–267
.19.
Maekawa, T., Patrikalakis, N. M., Wolter, F.-E., and Masuda, H., 2002, “Shape-Intrinsic Watermarks for 3-D Solids,” MIT Technology Disclosure Case 9505S, September 2001. Patent Attorney Docket No. 0050.2042-000. Application pending.
20.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1988, Numerical Recipes in C, Cambridge University Press.
21.
Maekawa
, T.
, 1996
, “Computation of Shortest Paths on Free-Form Parametric Surfaces
,” ASME J. Mech. Des.
, 118
(4
), pp. 499
–508
.22.
Marion, J. B., 1970, Classical Dynamics of Particles and Systems. Academic Press, New York and London.
23.
Galvez
, J. M.
, and Canton
, M.
, 1993
, “Normalization and Shape Recognition of Three-Dimensional Objects by 3D Moments
,” Pattern Recogn.
, 26
(5
), pp. 667
–681
.24.
Ko
, K. H.
, Maekawa
, T.
, and Patrikalakis
, N. M.
, 2003
, “An Algorithm for Optimal Free-Form Object Matching
,” Comput.-Aided Des.
, 35
(10
), pp. 913
–923
.25.
Horn
, B. K. P.
, 1987
, “Closed-Form Solution of Absolute Orientation Using Unit Quaternions
,” J. Opt. Soc. Am. A
, 4
(4
), pp. 629
–642
.26.
Zhou
, J.
, Sherbrooke
, E. C.
, and Patrikalakis
, N. M.
, 1993
, “Computation of Stationary Points of Distance Functions
,” Eng. Comput.
, 9
(4
), pp. 231
–246
.27.
Blaschke, W., and Leichtweiss, K., 1973, Elementare Differential Geometrie, Springer-Verlag, Berlin.
Copyright © 2003
by ASME
You do not currently have access to this content.