Despite extensive research and rapid increase of computing power, free-form object matching still remains a challenging problem in CAD/CAM areas. In this paper, various object features are discussed, and matching methods which use these features are introduced along with robust computational algorithms for umbilical points and intrinsic wireframes. The similarity of matched objects is assessed with three proposed tests. Each algorithm is demonstrated with examples.

1.
Campbell
,
R. J.
, and
Flynn
,
P. J.
,
2001
, “
A Survey of Free-Form Object Representation and Recognition Techniques
,”
Comput. Vis. Image Underst.
,
81
(
2
), pp.
166
210
.
2.
Besl, P. J., 1990, Machine Vision for Three-Dimensional Scenes, Academic Press, pp. 25–71.
3.
Prokop
,
R. J.
, and
Reeves
,
A. P.
,
1992
, “
A Survey of Moment-Based Techniques for Unoccluded Object Representation and Recognition
,”
Graph. Models Image Process.
,
54
(
2
), pp.
438
460
.
4.
Sharp
,
G. C.
,
Lee
,
S. W.
, and
Wehe
,
D. K.
,
2002
, “
ICP Registration Using Invariant Features
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
1
), pp.
90
102
.
5.
Yamany
,
S. M.
, and
Farag
,
A. A.
,
2002
, “
Surface Signatures: An Orientation Independent Free-Form Surface Representation Scheme for the Purpose of Objects Registration and Matching
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
24
(
8
), pp.
1105
1120
.
6.
Thirion, J.-P., 1994, “Extremal Points: Definition and Application to 3D Image Registration,” IEEE Proceedings Computer Vision and Pattern Recognition, IEEE Computer Society, Seattle, WA, pp. 587–592.
7.
Chua
,
C. S.
, and
Jarvis
,
R.
,
1996
, “
3D Free-Form Surface Registration and Object Recognition
,”
Int. J. Comput. Vis.
,
17
(
1
), pp.
77
99
.
8.
Ko, K. H., Maekawa, T., Patrikalakis, N. M., Masuda, H., and Wolter, F.-E., 2003, “Shape Intrinsic Fingerprints for Free-Form Object Matching,” Proceedings of the Eighth ACM Symposium on Solid Modeling and Applications, G. Elber, and V. Shapiro, eds., ACM Press, New York, pp. 196–207.
9.
Ko, K. H., Maekawa, T., Patrikalakis, N. M., Masuda, H., and Wolter, F.-E., 2003, “Shape Intrinsic Watermarks for 3D Solids,” Proceedings of the 2003 NSF Design, Service and Manufacturing Grantees and Research Conference, Birmingham, Alabama.
10.
Struik, D. J., 1950, Lectures on Classical Differential Geometry. Addison-Wesley, Cambridge, MA.
11.
Maekawa
,
T.
, and
Patrikalakis
,
N. M.
,
1994
, “
Interrogation of Differential Geometry Properties for Design and Manufacture
,”
Visual Comput.
,
10
(
4
), pp.
216
237
.
12.
Maekawa
,
T.
,
Wolter
,
F.-E.
, and
Patrikalakis
,
N. M.
,
1996
, “
Umbilics and Lines of Curvature for Shape Interrogation
,”
Comput. Aided Geom. Des.
,
13
(
2
), pp.
133
161
.
13.
Berry
,
M. V.
, and
Hannay
,
J. H.
,
1977
, “
Umbilic Points on Gaussian Random Surfaces
,”
J. Phys. A
,
10
(
11
), pp.
1809
1821
.
14.
Patrikalakis, N. M., and Maekawa, T., 2002, Shape Interrogation for Computer Aided Design and Manufacturing, Springer-Verlag, Heidelberg.
15.
Dokken
,
T.
,
1985
, “
Finding Intersections of B-spline Represented Geometries Using Recursive Subdivision Techniques
,”
Comput. Aided Geom. Des.
,
2
(
1–3
), pp.
189
195
.
16.
Samet
,
H.
,
1988
, “
Hierarchical Data Structures and Algorithms for Computer Graphics. I. Fundamentals
,”
IEEE Comput. Graphics Appl.
,
8
, pp.
48
68
.
17.
Sherbrooke
,
E. C.
, and
Patrikalakis
,
N. M.
,
1993
, “
Computation of the Solutions of Nonlinear Polynomial Systems
,”
Comput. Aided Geom. Des.
,
10
(
5
), pp.
379
405
.
18.
Maekawa
,
T.
, and
Chalfant
,
J. S.
,
1998
, “
Computation of Inflection Lines and Geodesics on Developable Surfaces
,”
Mathematical Engineering in Industry
,
7
(
2
), pp.
251
267
.
19.
Maekawa, T., Patrikalakis, N. M., Wolter, F.-E., and Masuda, H., 2002, “Shape-Intrinsic Watermarks for 3-D Solids,” MIT Technology Disclosure Case 9505S, September 2001. Patent Attorney Docket No. 0050.2042-000. Application pending.
20.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1988, Numerical Recipes in C, Cambridge University Press.
21.
Maekawa
,
T.
,
1996
, “
Computation of Shortest Paths on Free-Form Parametric Surfaces
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
499
508
.
22.
Marion, J. B., 1970, Classical Dynamics of Particles and Systems. Academic Press, New York and London.
23.
Galvez
,
J. M.
, and
Canton
,
M.
,
1993
, “
Normalization and Shape Recognition of Three-Dimensional Objects by 3D Moments
,”
Pattern Recogn.
,
26
(
5
), pp.
667
681
.
24.
Ko
,
K. H.
,
Maekawa
,
T.
, and
Patrikalakis
,
N. M.
,
2003
, “
An Algorithm for Optimal Free-Form Object Matching
,”
Comput.-Aided Des.
,
35
(
10
), pp.
913
923
.
25.
Horn
,
B. K. P.
,
1987
, “
Closed-Form Solution of Absolute Orientation Using Unit Quaternions
,”
J. Opt. Soc. Am. A
,
4
(
4
), pp.
629
642
.
26.
Zhou
,
J.
,
Sherbrooke
,
E. C.
, and
Patrikalakis
,
N. M.
,
1993
, “
Computation of Stationary Points of Distance Functions
,”
Eng. Comput.
,
9
(
4
), pp.
231
246
.
27.
Blaschke, W., and Leichtweiss, K., 1973, Elementare Differential Geometrie, Springer-Verlag, Berlin.
You do not currently have access to this content.