Volumetric models of 3D objects have recently been introduced into the reverse engineering (RE) process. Grid-based methods are considered as the major technique for reconstructing surfaces from these volumetric models. This is mainly due to the efficiency and simplicity of these methods. However, these grid-based methods suffer from a number of inherent drawbacks, resulting from the fact that the imposed Cartesian grid in general is not well adapted to the surface, neither in size nor in orientation. In order to overcome the above obstacles a new iso-surface extraction method is proposed for volumetric models. The main idea is first to construct a geometrical field that is induced by the object’s shape. This geometrical field represents the natural directions and a grid cell size for each point in the domain. Then, the imposed volumetric grid is deformed by the produced geometrical field toward the object’s shape. The iso-surface meshes can be extracted from the resulting adaptive grid by any conventional grid-based contouring technique. The proposed method provides better approximation of the unknown surface and exhibits anisotropy, which is present inherently in the surface. Moreover, since the produced meshes are quad-dominant, Catmull-Clark subdivision surfaces are directly constructed from these meshes.

1.
Varady
,
T.
,
Martin
,
R.
, and
Cox
,
J.
, 1997, “
Reverse Engineering of Geometric Models - an Introduction
,”
CAD
0010-4485,
29
(
4
), pp.
255
268
.
2.
Germain
,
H. J.
,
Johnson
,
D. E.
, and
Cohen
,
E.
, 2004, “
Integrating Freeform and Feature-Based Fitting Methods
,”
ASME Design Engineering Technical Conference
, Salt Lake City, UT.
6.
Krishnamurthy
,
V.
, and
Levoy
,
M.
, 1996, “
Fitting Smooth Surfaces to Dense Polygon Meshes
,” in SIGGRAPH 96 Conference Proceedings,
New Orleans
, LA, Aug. 4-9, ACM SIGGRAPH, pp.
313
324
.
8.
Catmull
,
E.
, and
Clark
,
J.
, 1978, “
Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes
,”
Comput.-Aided Des.
0010-4485,
10
, pp.
350
355
.
9.
Litke
,
N.
,
Levin
,
A.
, and
Schröder
,
P.
, 2001, “
Fitting Subdivision Surfaces
,” in
IEEE Visualization 2001
, IEEE,
New York
, pp.
319
324
.
10.
Peters
,
J.
, 2000, “
Patching Catmull-Clark Meshes
,” in SIGGRAPH, ACM,
New York
, pp.
255
258
.
11.
Boissonat
,
J. D.
, 1984, “
Representing 2D and 3D Shapes with the Delaunay Triangulation
,” in Seventh International Conference on Pattern Recognition, Montreal, Canada, July 30–Aug. 2, 1984, IEEE, New York, pp.
745
748
.
12.
Edelsbrunner
,
H.
, and
Mücke
,
E. P.
, 1992, “
Three-Dimensional Alpha Shapes
,” Tech. Rep. No. 1734, Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL.
13.
Bernardini
,
F.
,
Mittleman
,
J.
,
Rushmeier
,
H.
,
Silva
,
C.
, and
Taubin
,
G.
, 1999, “
The Ball-Pivoting Algorithm for Surface Reconstruction
,”
IEEE Trans. Vis. Comput. Graph.
1077-2626,
5
(
4
), pp.
349
359
.
14.
Amenta
,
N.
,
Choi
,
S.
, and
Kolluri
,
R.
, 2001, “
The Power Crust
,” in
6th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, MI.
15.
Dey
,
T.
,
Giesen
,
J.
, and
Hudson
,
J.
, 2001, “
A Delaunay Based Shape Reconstruction From Large Data
,” in
IEEE Symp. on Parallel and Large-Data Visualization and Graphics
, October 22-23, San Diego, CA, pp.
19
27
.
16.
Levin
,
D.
, 1998, “
The Approximation Power of Moving Least-Squares
,”
Math. Comput.
0025-5718,
67
(
224
), pp.
1517
1531
.
17.
Alexa
,
M.
,
Behr
,
J.
,
Cohen-Or
,
D.
,
Fleishman
,
S.
,
Levin
,
D.
, and
Silva
,
C. T.
, 2001, “
Point Set Surfaces
,”
IEEE Visualization 2001
, October, IEEE,
New York
, pp.
21
28
.
18.
Fleishman
,
S.
,
Cohen-Or
,
D.
, and
Silva
,
C.
, 2005, “
Robust Moving Least-Squares Fitting With Sharp Features
,” in SIGGRAPH ’05, Vol.
24
, ACM,
New York
.
19.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1992, “
Surface Reconstruction From Unorganized Points
,”
Comput. Graph.
0097-8930,
26
(
2
), pp.
71
78
.
20.
Curless
,
B.
, and
Levoy
,
M.
, 1996, “
A Volumetric Method for Building Complex Models From Range Images
,”
Comput. Graph.
0097-8930,
30
(Annual Conference Series), pp.
303
312
.
21.
Wyvill
,
G.
,
McPheeters
,
C.
, and
Wyvill
,
B.
, 1986, “
Data Structure for Soft Objects
,”
Visual Comput.
0178-2789,
2
(
4
), pp.
227
234
.
22.
Hoppe
,
H.
,
DeRose
,
T.
,
Duchamp
,
T.
,
McDonald
,
J.
, and
Stuetzle
,
W.
, 1993, “
Mesh Optimization
,”
Comput. Graph.
0097-8930,
27
(Annual Conference Series), pp.
19
26
.
23.
Alliez
,
P.
,
Cohen-Steiner
,
D.
,
Devillers
,
D.
,
Lévy
,
B.
, and
Desbrun
,
M.
, 2003, “
Anisotropic Polygonal remeshing
,” in Proceedings of ACM SIGGRAPH 2003, Vol.
22
(
3
) of
ACM Transactions on Graphics
, ACM,
New York
, pp.
485
493
.
24.
Carr
,
J. C.
,
Beatson
,
R. K.
,
Cherrie
,
C.
,
Mitchell
,
T. J.
,
Fright
,
W. R.
,
McCallum
,
B. C.
, and
Evans
,
T. R.
, 2001, “
Reconstruction and Representation of 3D Objects With Radial Basis Functions
,” in SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, ACM Press/ACM SIGGRAPH,
New York
, pp.
67
76
.
25.
Ohtake
,
Y.
,
Belyaev
,
A.
,
Alexa
,
M.
,
Turk
,
G.
, and
Seidel
,
H.-P.
, 2003, “
Multi-level Partition of Unity Implicits
,” in ACM SIGGRAPH 2003, ACM,
New York
, pp.
463
470
.
26.
Einstein
,
A.
, 1953,
The Meaning of Relativity
,
Princeton U. P.
, Princeton, NJ.
27.
Frey
,
P. J.
, and
George
,
P.-L.
, 2000,
Mesh Generation Application to Finite Elements
,
HERMES Science
, London.
28.
Tchon
,
K.-F.
,
Khachan
,
M.
,
Guibault
,
F.
, and
Camarero
,
R.
, 2003, “
Constructing Anisotropic Geometric Metrics Using Octrees and Skeletons
,” in
12th International Meshing Rountable
, September 14-17, Santa Fe, NM, pp.
293
304
.
29.
Azernikov
,
S.
, and
Fischer
,
A.
, 2004, “
Efficient Surface Reconstruction Method for Distributed CAD
,”
CAD
0010-4485,
36
, pp.
799
808
.
30.
Frisken
,
S. F.
,
Perry
,
R. N.
,
Rockwood
,
A. P.
, and
Jones
,
T. R.
, 2000, “
Adaptively Sampled distance Fields: A General Representation of Shape for Computer Graphics
,” in Proceedings of ACM SIGGRAPH 2000, ACM,
New York
, pp.
249
254
.
31.
Azernikov
,
S.
, and
Fischer
,
A.
, 2005, “
Anisotropic Meshing of Implicit Surfaces
,” in IEEE International Conference on Shape Modeling and Applications, pp.
94
103
.
32.
Moore
,
D.
, and
Warren
,
J.
, 1991, “
Mesh Displacement: An Improved Contouring Method for Trivariate Data
,” Tech. Rep. No. COMP TR91-166, Department of Computer Science, Rice University, P.O. Box 1892, Houston, TX 77251-1892, September.
33.
Balmelli
,
L.
,
Morris
,
C. J.
,
Taubin
,
G.
, and
Bernardini
,
F.
, 2002, “
Volume Warping for Adaptive Isosurface Extraction
,” in Proceedings of the 13th IEEE Visualization 2002 Conference (VIS-02), IEEE Computer Society,
New York
, pp.
467
474
.
34.
Lorensen
,
W. E.
, and
Cline
,
H. E.
, 1987, “
Marching Cubes: A High Resolution 3D Surface Construction Algorithm
,”
Comput. Graph.
0097-8930,
21
(
4
), pp.
163
168
.
35.
Bloomenthal
,
J.
, 1994, “
An Implicit Surface Polygonizer
,” in
Graphics Gems IV
,
Academic
, Boston, pp.
324
349
.
36.
Ju
,
T.
,
Losasso
,
F.
,
Schaefer
,
S.
, and
Warren
,
J.
, 2002, “
Dual Contouring of Hermite Data
,”
ACM Trans. Graphics
0730-0301,
21
(
3
), pp.
339
346
.
37.
Azernikov
,
S.
,
Miropolsky
,
A.
, and
Fischer
,
A.
, 2003, “
Surface Reconstruction of Freeform Objects Based on Multiresolution Volumetric Method
,” in 8th ACM Symposium on Solid Modeling and Applications, pp.
115
126
.
38.
Press
,
W. H.
,
Flannery
,
B. P.
,
Teukolsky
,
S. A.
, and
Vetterling
,
W. T.
, 1991,
Numerical Recipes in C.
Cambridge U. P.
, New York.
39.
Dey
,
T. K.
, and
Goswami
,
S.
, 2006. “
Provable Surface Reconstruction From Noisy Samples
,”
Comput. Geom. Theory Appl.
,
35
, pp.
124
141
.
40.
Marinov
,
M.
, and
Kobbelt
,
L.
, 2004, “
Direct Anisotropic Quad-Dominant Remeshing
,” in
Pacific Graphics
,
IEEE Computer Society
, pp.
207
216
.
41.
Ohtake
,
Y.
, and
Belyaev
,
A. G.
, 2002, “
Dual/Primal Mesh Optimization for Polygonized Implicit Surfaces
,” in Symposium on Solid Modeling and Applications, pp.
171
178
.
42.
Thompson
,
W.
,
de St. Germain
,
J.
,
Stark
,
S.
, and
Henderson
,
T. C.
, 1999, “
Feature-Based Reverse Engineering of Mechanical Parts
,”
IEEE Trans. Rob. Autom.
1042-296X,
15
(
1
), pp.
57
66
.
43.
Azernikov
,
S.
, and
Fischer
,
A.
, 2005, “
A New Surface Reconstruction Method Based on Volume Warping for RE and RP applications
,” in
2nd International Conference on Advanced Research in Virtual and Rapid Prototyping
, Leiria, Portugal.
44.
Azernikov
,
S.
, and
Fischer
,
A.
, 2005, “
A New Grid Warping Method for Surface Reconstruction of Medical Models
,” in
Eighth Israeli Symposium on Computer Aided Surgery, Medical Robotics, and Medical Image Processing
,
Rabin Medical Center
,
Petah-Tikva, Isreal
.
45.
Plantinga
,
S.
, and
Vegter
,
G.
, 2004, “
Isotopic Approximation of Implicit Curves and Surfaces
,” in Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing (SGP-04),
D.
Fellner
and
S.
Spencer
, eds., Eurographics Association, pp.
251
260
.
You do not currently have access to this content.