This paper focuses on efficient algorithms for automatic recognition of user-defined turning features on mill/turn parts. As with other domains, recognition of interacting features is a difficult issue because feature interaction removes faces and alters the topology of the isolated turning features. This paper presents a method for efficiently recognizing both noninteracting and interacting rotational features from CAD model of mill/turn parts. Additionally, the method supports user-defined turning features that are represented using N-REP, a neutral feature representation language. First, the profiles of the revolved faces on a mill/turn part are obtained and the unturnable portions of these profiles are detected. These profiles then are used to construct the part graph and to solve feature interactions between coaxial turning features. Finally, graph-based and rule-based feature recognition are combined to recognize user-defined features.

1.
Vandenbrande
,
J. H.
, and
Requicha
,
A. A. G.
, 1993, “
Spatial Reasoning for the Automatic Recognition of Machinable Features in Solid Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
15
(
12
), pp.
1269
1285
.
2.
Gao
,
S.
, and
Shah
,
J. J.
, 1998, “
Automatic Recognition of Interacting Machining Features Based on Minimal Condition Subgraph
,”
Comput.-Aided Des.
0010-4485,
30
(
9
), pp.
727
739
.
3.
Marefat
,
M.
, and
Kashyap
,
R. L.
, 1990, “
Geometric Reasoning for Recognition of 3-D Object Features
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
12
(
10
), pp.
949
965
.
4.
Regli
,
W. C.
,
Gupta
,
S. K.
, and
Nau
,
D. S.
, 1997, “
Toward Multiprocessor Feature Recognition
,”
Comput.-Aided Des.
0010-4485,
29
(
1
), pp.
37
51
.
5.
Corney
,
J.
,
Hayes
,
C.
,
Sundararajan
,
V.
, and
Wright
,
P.
, 2005, “
The CAD/CAM Interface: A 25-Year Retrospective
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
5
(
3
), pp.
188
197
.
6.
Srinivasan
,
R.
,
Liu
,
C. R.
, and
Fu
,
K. S.
, 1985, “
Extraction of Manufacturing Details From Geometric Models
,”
Comput. Ind. Eng.
0360-8352,
9
(
2
), pp.
124
135
.
7.
Li
,
R.-K.
, 1988, “
A Part-Feature Recognition System for Rotational Parts
,”
Int. J. Prod. Res.
0020-7543,
26
(
9
), pp.
1451
1475
.
8.
Dutta
,
D.
,
Kim
,
Y. S.
,
,
Kim
,
Y.
,
Wang
,
E.
, and
Yip-Hoi
,
D.
, 1997, “
Feature Extraction and Operation Sequencing for Machining on Mill-Turns
,” CIE-4276,
Proceedings of the 1997 ASME Design Technical Conferences
, Sacramento, ASME, New York, pp.
46
56
.
9.
Tseng
,
Y. J.
, and
Joshi
,
S. B.
, 1998, “
Recognition of Interacting Rotational and Prismatic Machining Features From 3-D Mill-Turn Parts
,”
Int. J. Prod. Res.
0020-7543,
36
(
11
), pp.
3147
3165
.
10.
Yip-Hoi
,
D.
, and
Dutta
,
D.
, 1997, “
Finding the Maximum Turnable State for Mill/Turn Parts
,”
Comput.-Aided Des.
0010-4485,
29
(
12
), pp.
879
894
.
11.
Yip-Hoi
,
D.
,
Dutta
,
D.
, and
Huang
,
Z.
, 2003, “
A Customizable Machining Feature Extraction Methodology for Turned Components
,”
J. Manuf. Syst.
0278-6125,
22
(
2
), pp.
82
98
.
12.
Dedhia
,
H.
, 1997, “
Interactive Definition of Form Features
,” M.S. thesis, Arizona State University, Tempe.
13.
D’Souza
,
R.
, 1999, “
An Experimental Investigation of Form Feature Representation and Data Transfer
,” M.S. thesis, Arizona State University, Tempe, AZ.
14.
Medichalam
,
M. S.
,
Shah
,
J. J.
, and
D’Souza
,
R.
, 2004, “
N-Rep: a Neutral Feature Representation to Support Feature Mapping and Data Exchange Across Applications
,”
Proceedings of 2004 ASME Design Technical Conferences and Computer and Information in Engineering Conference
, Salt Lake City, ASME, New York, ASME Paper No. DETC-57712.
15.
Shah
,
J. J.
,
Anderson
,
D.
,
Kim
,
Y. S.
, and
Joshi
,
S.
, 2001, “
A Discourse on Geometry Feature Recognition From CAD Models
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
(
1
), pp.
41
51
.
16.
Han
,
J. Y.
,
Pratt
,
M.
, and
Regli
,
W. C.
, 2000, “
Manufacturing Feature Recognition From Solid Models: A Status Report
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
782
796
.
17.
Shah
,
J. J.
, 1991, “
Conceptual Development of Form Features and Feature Modelers
,”
Res. Eng. Des.
0934-9839,
2
(
2
), pp.
93
108
.
18.
Gaines
,
D. M.
, and
Hayes
,
C. C.
, 1999, “
CUSTOM-CUT: A Customizable Feature Recognizer
,”
Comput.-Aided Des.
0010-4485,
31
(
2
), pp.
85
100
.
19.
Venkataraman
,
S.
,
Sohoni
,
M.
, and
Kulkarni
,
V.
, 2001, “
A Graph-Based Framework for Feature Recognition
,”
Proceedings of the 6th ACM Symposium on Solid Modeling and Applications
, Ann Arbor, ACM, New York, pp.
194
205
.
20.
Brown
,
J.
, 1998,
Advanced Machining Technology Handbook
,
McGraw-Hill
New York, Chap. 17.
21.
ACIS
, 1998,
ACIS Geometric Modeler Version 7.0 Programming Reference
,
Spatial Technologies
, Boulder.
22.
ISO
, 2002, “
ISO 10303 Product Data Representation and Exchange, Application Protocol 224: Mechanical Product Definition for Process Planning Using Machining Features
.”
23.
ISO
, 2005, “
ISO 14649 Data Model for Computerized Numerical Controllers, Part 12: Process Data for Turning
.”
24.
Pande
,
S. S.
, and
Palsule
,
N. H.
, 1988, “
GCAPPS—A Computer-Assisted Generative Process Planning System for Turned Components
,”
Comput.-Aided Eng. J.
0263-9327,
5
(
4
), pp.
163
168
.
25.
Kyprianou
,
L.
, 1980, “
Shape Classification in Computer Aided Design
,” Ph.D. dissertation, University of Cambridge, Cambridge, England.
26.
Joshi
,
S.
, and
Chang
,
T. C.
, 1988, “
Graph-based Heuristic for Recognition of Machined Features From a 3D Solid Model
,”
Comput.-Aided Des.
0010-4485,
20
(
2
), pp.
58
65
.
27.
Cormen
,
T. H.
,
Leiserson
,
C. E.
,
Rivest
,
R. L.
, and
Stein
,
L.
, 2001,
Introduction to Algorithms
,
The MIT Press
, Cambridge, MA, Chap. 22.
28.
Li
,
S.
, 2005, “
Identification and Recognition of User-Defined Turning Features for Turned and Mill/Turn Parts
,” M.S. thesis, Arizona State University, Tempe.
You do not currently have access to this content.