Assembly variant design in agile manufacturing involves modifying components or mixing and matching existing components from valid assemblies to proliferate new variant products. Wanget al. (2001, “Assembly Modeling for Complex Assembly Variant Design,” Tenth Industrial Engineering Research Conference, Dallas TX; 2005, “Complex Assembly Variant Design in Agile Manufacturing. Part I: System Architecture and Assembly Modeling Methodology,” IIE Transactions on Design and Manufacturing, 37(1), pp. 1–15; 2005, “Complex Assembly Variant Design in Agile Manufacturing. Part II: Assembly Variant Design Methodology,” IIE Transactions on Design and Manufacturing, 37(1), pp. 17–33) developed an assembly variant design methodology based on a component relationship model that captures assembly mating relationships at the feature level referred as assembly mating graph. This paper is devoted to formulation of assembly mating graphs from legacy computer-aided design models. Mating relationships are classified as direct, indirect, and interference relationships. Direct mating relationships are identified using geometric methods while a ray-firing algorithm is used to identify indirect and interference type mating relationships. The effectiveness of the developed methodology is demonstrated using illustrative examples.

1.
Wang
,
A.
, and
Nagi
,
R.
, 2001, “
Assembly Modeling for Complex Assembly Variant Design
,”
Tenth Industrial Engineering Research Conference
,
Dallas TX
.
2.
Wang
,
A.
,
Koc
,
B.
, and
Nagi
,
R.
, 2005, “
Complex Assembly Variant Design in Agile Manufacturing. Part I: System Architecture and Assembly Modeling Methodology
,”
IIE Transactions on Design and Manufacturing
,
37
(
1
), pp.
1
15
.
3.
Wang
,
A.
,
Koc
,
B.
, and
Nagi
,
R.
, 2005, “
Complex Assembly Variant Design in Agile Manufacturing. Part II: Assembly Variant Design Methodology
,”
IIE Transactions on Design and Manufacturing
,
37
(
1
), pp.
17
33
.
4.
Ovtcharova
,
J.
,
Pahl
,
G.
, and
Rix
,
J.
, 1992, “
Proposal for Feature Classification in Feature-based Design
,”
Comput. Graph.
0097-8930,
16
(
2
), pp.
187
195
.
5.
Huang
,
Z.
, and
Yip-Hoi
,
D.
, 2002, “
High-Level Feature Recognition Using Feature Relationship Graphs
,”
Comput.-Aided Des.
0010-4485,
34
(
8
), pp.
561
582
.
6.
Gao
,
S.
, and
Shah
,
J. J.
, 1998, “
Automatic Recognition of Interacting Machining Features Based on Minimal Condition Subgraph
,”
Comput.-Aided Des.
0010-4485,
30
(
9
), pp.
727
739
.
7.
Van Holland
,
W.
, and
Bronsvoort
,
W. F.
, 2000, “
Assembly Features in Modeling and Planning
,”
Rob. Comput.-Integr. Manufact.
0736-5845,
16
(
4
), pp.
277
294
.
8.
Shah
,
J. J.
, and
Mäntyla
,
M.
,
Parametric and Feature-Based CAD/CAM: Concepts Techniques and Applications
,
Wiley
,
New York
.
9.
Han
,
J. H.
,
Pratt
,
M.
, and
Regli
,
W. C.
, 2000, “
Manufacturing Feature Recognition From Solid Models: A status report
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
782
796
.
10.
Dereli
,
T.
, and
Filiz
,
H.
, 2002, “
Note on the Use of STEP for Interfacing Design to Process Planning
,”
Comput.-Aided Des.
0010-4485,
34
(
14
), pp.
1075
1085
.
11.
Yeol
,
L. J.
, and
Kim
,
K.
, 1998, “
A Feature-Based Approach to Extracting Machining Features
,”
Comput.-Aided Des.
0010-4485,
30
(
13
), pp.
1019
1035
.
12.
Mascle
,
C.
, 1995, “
Features Modeling in Assembly Sequence and Resource Planning
,”
Proceedings of the IEEE International Symposium on Assembly and Task Planning
,
Pittsburgh, PA
, pp.
232
237
.
13.
Mascle
,
C.
,
Jabbour
,
T.
, and
Maranzana
,
R.
, 1997, “
Assembly Features for Mechanical Product Data
,”
Proceedings of the 1997 IEEE International Symposium on Assembly and Task Planning, ISATP’97
,
Marina del Ray, CA
, pp.
218
223
.
14.
Mascle
,
C.
, 1999, “
Feature-Based Assembly Model and Multi-Agents system Structure for Computer-Aided Assembly
,”
Proceedings of the IEEE International Symposium on Assembly and Task Planning
, pp.
8
13
.
15.
Sung
,
R. C. W.
,
Corney
,
J. R.
, and
Clark
,
D. E. R.
, 2000, “
Octree Based Recognition of Assembly Features
,”
ASME 2000 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
.
16.
Pierce
,
R.
, and
Rosen
,
D.
, 2007, “
Simulation of Mating Between Nonanalytic Surfaces Using a Mathematical Programing Formulation
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
4
), pp.
314
321
.
17.
Sommerville
,
M. G. L.
,
Clark
,
D. E. R.
, and
Corney
,
J. R.
, 1995, “
Viewer-Centered Feature Recognition
,”
Proceedings of the Third ACM Symposium on Solid Modeling and Applications
, pp.
125
130
.
18.
Coma
,
O.
,
Mascle
,
C.
, and
Veron
,
P.
, 2003, “
Geometric and Form Feature Recognition Tools Applied to a Design for Assembly Methodology
,”
Comput.-Aided Des.
0010-4485,
35
(
13
), pp.
1193
1210
.
19.
Boothroyd
,
G.
, 1994, “
Product Design for Manufacture and Assembly
,”
Comput.-Aided Des.
0010-4485,
26
(
7
), pp.
505
520
.
20.
Boothroyd
,
G.
, and
Dewhurst
,
P.
, 1990, “
Product Design Decisions Anticipate Robotic Assembly
,”
Robotics World
,
8
(
1
), pp.
21
23
.
21.
Sundaram
,
S.
,
Remmler
,
I.
, and
Amato
,
N. M.
, 2001, “
Disassembly Sequencing Using a Motion Planning Approach
,”
Robotics and Automation
,
2
, pp.
1475
1480
.
22.
Wilson
,
R. H.
, and
Latombe
,
J.-C.
, 1994, “
Geometric Reasoning About Mechanical Assembly
,”
Artif. Intell.
0004-3702,
71
(
2
), pp.
371
96
.
23.
Wilson
,
R. H.
, 1998, “
Geometric Reasoning About Assembly Tools
,”
Artif. Intell.
0004-3702,
98
(
1–2
), pp.
237
279
.
24.
Halperin
,
D.
,
Latombe
,
J.-C.
, and
Wilson
,
R. H.
, 2000, “
A General Framework for Assembly Planning: The Motion Space Approach
,”
Algorithmica
0178-4617,
26
(
3–4
), pp.
577
601
.
25.
Zha
,
X. F.
, and
Du
,
H.
, 2002, “
A PDES/STEP-Based Model and System for Concurrent Integrated Design and Assembly Planning
,”
Comput.-Aided Des.
0010-4485,
34
(
14
), pp.
1087
1110
.
26.
Rachuri
,
S.
,
Han
,
Y.-H.
,
Foufou
,
S.
,
Feng
,
S. C.
,
Roy
,
U.
,
Wang
,
F.
,
Sriram
,
R. D.
, and
Lyons
,
K. W.
, 2006, “
Model for Capturing Product Assembly Information
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
6
(
1
), pp.
11
21
.
27.
Eng
,
T.-H.
,
Ling
,
Z.-K.
,
Olson
,
W.
, and
McLean
,
C.
, 1999, “
Feature-Based Assembly Modeling and Sequence Generation
,”
Comput. Ind. Eng.
0360-8352,
36
(
1
), pp.
17
33
.
28.
Gupta
,
S. K.
,
Paredis
,
C. J.
,
Sinha
,
R.
, and
Brown
,
P. F.
, 2001, “
Intelligent Assembly Modeling and Simulation
,”
Assem. Autom.
0144-5154,
21
(
3
), pp.
215
235
.
29.
Butterfield
,
J.
,
Mc Aleenan
,
D.
,
Crosby
,
S.
,
Curran
,
R.
,
Price
,
M.
,
Armstrong
,
C. G.
, and
Raghunathan
,
S.
, 2007, “
Optimisation of Aircraft Fuselage Assembly Process Using Digital Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
7
(
3
), pp.
269
275
.
30.
Ko
,
H.
, and
Lee
,
K.
, 1987, “
Automatic Assembling Procedure Generation From Mating Conditions
,”
Comput.-Aided Des.
0010-4485,
19
(
1
), pp.
3
10
.
31.
Gui
,
J. K.
, and
Mäntyla
,
M.
, 1994, “
Functional Understanding of Assembly Modelling
,”
Comput.-Aided Des.
0010-4485,
26
(
6
), pp.
435
451
.
32.
Roy
,
U.
, and
Liu
,
C. R.
, 1988, “
Establishment of Functional Relationships Between Product Components in Assembly Database
,”
Comput.-Aided Des.
0010-4485,
20
(
10
), pp.
570
580
.
33.
Morris
,
G. H.
, and
Haynes
,
L. S.
, 1987, “
Robotic Assembly by Constraints
,”
IEEE 1987 International Conference on Robotics and Automation
, pp.
1507
1515
.
34.
Lee
,
K.
, and
Gossard
,
D. C.
, 1985, “
A Hierarchical Data Structure for Representing Assemblies: Part 1
,”
Comput.-Aided Des.
0010-4485,
17
(
1
), pp.
15
19
.
You do not currently have access to this content.