In this paper combined algorithms for the control of nontriangular nonlinear systems with unmatched uncertainties will be presented. The controllers consist of a combination of Dynamical Adaptive Backstepping (DAB) and Sliding Mode Control (SMC) of first and second order. In order to solve a tracking problem, the DAB algorithm (a generalization of the backstepping technique) makes use of virtual functions as well as tuning functions to construct a transformed system for which a regulation problem has to be solved. The new state is extended by an nρth order subsystem in canonical form where n is the order of the original system and ρ is the relative degree. The role of the sliding mode control is to replace the last step of the design of the control law to obtain more robustness toward disturbances and unmodeled dynamics. The main advantages of the second-order sliding mode algorithm are the prevention of chattering, higher accuracy, and a significant simplification of the control law. A comparative study of these first and second order sliding controllers will be presented. [S002-0434(00)02604]

1.
Jiang, Z. P., and Praly, L., 1991, “Iterative designs of adaptive controllers for systems with nonlinear integrators,” Proceedings of the 30th IEEE Conference on Decision and Control, Brighton, UK, pp. 2482–2487.
2.
Kanellakopoulos
,
I.
,
Kokotovic´
,
P. V.
, and
Morse
,
A. S.
,
1991
, “
Systematic Design of Adaptive Controllers for Feedback Linearizable Systems
,”
IEEE Trans. Autom. Control
,
36
, pp.
1241
1253
.
3.
Krstic´
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic´
,
P. V.
,
1992
, “
Adaptive Nonlinear Control without Overparametrization
,”
Syst. Control Lett.
,
19
, pp.
177
185
.
4.
Rios-Bolı´var, M., Sira-Ramı´rez, H., and Zinober, A. S. I., 1995, “Output Tracking Control via Adaptive Input-Output Linearization: A Backstepping Approach,” Proc. 34th IEEE CDC, New Orleans, Vol. 2, pp. 1579–1584.
5.
Rios-Bolı´var, M., Zinober, A. S. I., and Sira-Ramı´rez, H., 1996, “Dynamical Sliding Mode Control via Adaptive Input-Output Linearization: A Backstepping Approach,” Robust Control via Variable Structure and Lyapunov Techniques, F. Garofalo and L. Glielmo, eds., Springer-Verlag, pp. 15–35.
6.
Bartolini, G., Ferrara, A., Giacomini, L., and Usai, E., 1996, “A combined backstepping/second order sliding mode approach to control a class of nonlinear systems,” Proc. IEEE International Workshop on Variable Structure Systems, Tokyo, Japan, pp. 205–210.
7.
Rios-Bolı´var
,
M.
,
Zinober
,
A. S. I.
, and
Sira-Ramı´rez
,
H.
,
1997
, “
Dynamical Adaptive Sliding Mode Output Tracking Control of a Class of Nonlinear Systems
,”
Int. J. Robust Nonlinear Control
,
7
, pp.
387
405
.
8.
Rios-Bolı´var, M., 1997, “Adaptive Backstepping and Sliding Mode Control of Uncertain Nonlinear Systems,” Ph.D. thesis, Dept. of Applied Mathematics, The University of Sheffield.
9.
Rios-Bolı´var
,
M.
, and
Zinober
,
A. S. I.
,
1998
, “
A Symbolic Computation Toolbox for the Design of Dynamical Adaptive Nonlinear Controllers
,”
Appl. Math. Comp. Sci.
,
8
, pp.
73
88
.
10.
Sontag
,
E. D.
,
1989
, “
Smooth stabilization implies coprime factorization
,”
IEEE Trans. Autom. Control
,
34
, pp.
435
443
.
11.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1997
, “
Applications of a suboptimal discontinuous control algorithm for uncertain second order systems
,”
Int. J. Robust Nonlinear Control
,
7
, pp.
299
320
.
12.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1998
, “
Chattering avoidance by second-order sliding mode control
,”
IEEE Trans. Autom. Control
,
43
, pp.
241
246
.
13.
Kirk, D. E., 1970, Optimal Control Theory, Prentice-Hall, New Jersey.
14.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Usai
,
E.
,
1997
, “
Output Tracking Control of Uncertain Nonlinear Second-Order Systems
,”
Automatica
,
33
, pp.
2203
2212
.
15.
Kravaris
,
C.
, and
Palanki
,
S.
,
1988
,
AIChE J.
,
34
, pp.
1119
1127
.
16.
Sira-Ramı´rez, H., and Delgado, M., 2000, “Passivity Based Mechatronic Regulation of Nonlinear Continuous Processes,” in Mechatronic Systems Techniques and Applications, C. T. Leondes, ed., Gordon and Breech Science Publishers, Australia, 1, pp. 315–368.
17.
Zinober, A. S. I., Scarratt, J. C., Mills, R. E., and Koshkouei, A. J., 2000, “New Developments in Dynamical Adaptive Backstepping Control,” in Nonlinear Control in the Year 2000, Isidori, A., Lamnabhi-Lagarrigue, F, and Respondek, W., eds., Springer-Verlag, Berlin, 2, pp. 565–622.
You do not currently have access to this content.