The invariance and robustness properties of variable structure control are lost in digital implementation. This paper presents three discrete-time variable structure control (DVSC) methods that can recover those properties for linear uncertain systems. The first method uses a disturbance compensator formulated in the variable structure framework and a decoupling law to separate the disturbance estimation dynamics from the closed loop dynamics. In the second approach, a recursive switching function is developed, which allows recovering the lost invariance and robustness properties, without using the disturbance compensator. The first method can result in slow transient dynamics, and the second can result in a large overshoot. In the third method, a new recursive switching function is developed and combined with the decoupled disturbance compensator method to recover the lost invariance and robustness properties. The three DVSC methods are applied to control the motion of an xy-stage of a CNC milling machine. In this experiment, the third method provided the best result. [S0022-0434(00)02204-8]

1.
Kaynak
,
O.
, and
Denker
,
A.
,
1993
, “
Discrete-time Sliding Mode Control in the Presence of System Uncertainty
,”
Int. J. Control
,
57
, No.
5
, pp.
1177
1189
.
2.
Su, W.-C., Drakunov, S. V., and O¨zgu¨ner, U¨., 1993, “Sliding Mode Control in Discrete Time Linear Systems,” Proc. IFAC 12th World Congress, Vol. 2, pp. 267–270.
3.
Gao
,
W.
,
Wang
,
Y.
, and
Homaifa
,
A.
,
1995
, “
Discrete-time Variable Structure Control Systems
,”
IEEE Trans. Ind. Electron.
,
42
, No.
2
, pp.
117
122
.
4.
Corradini
,
M. L.
, and
Orlando
,
G.
,
1998
, “
Variable structure control of discretized continuous-time systems
,”
IEEE Trans. Autom. Control
,
43
, No.
9
, pp.
1329
1334
.
5.
Eun
,
Y.
,
Kim
,
J.
,
Kim
,
K.
, and
Cho
,
D.
,
1999
, “
Discrete-time Variable Structure Controller with a Decoupled Disturbance Compensator and Its Application to a CNC Servomechanism
,”
IEEE Trans. Control Syst. Technol.
,
7
, No.
4
, pp.
414
423
.
6.
Kim, J., and Cho, D., 2000, “Discrete-time Variable Structure Control Using Recursive Switching Function,” Proc. American Control Conference, pp. 1113–1117.
7.
Drazˇenovic´
,
B.
,
1969
, “
The Invariance Conditions in Variable Structure Systems
,”
Automatica
,
5
, pp.
287
295
.
8.
Young
,
K. D.
,
Utkin
,
V. I.
, and
O¨zgu¨ner
,
U¨.
,
1999
, “
A Control Engineer’s Guide to Sliding Mode Control
,”
IEEE Trans. Control Syst. Technol.
,
7
, No.
3
, pp.
328
342
.
9.
Slotine
,
J.-J. E.
, and
Sastry
,
S. S.
,
1983
, “
Tracking Control of Nonlinear Systems Using Sliding Surfaces with Applications to Robot Manipulators
,”
Int. J. Control
,
38
, No.
2
, pp.
465
492
.
10.
Burton
,
J. A.
, and
Zinober
,
A. S. I.
,
1986
, “
Continuous Approximation of Variable Structure Control
,”
Int. J. Syst. Sci.
,
17
, No.
6
, pp.
875
885
.
11.
Utkin
,
V. I.
,
1977
, “
Variable Structure Systems with Sliding Modes
,”
IEEE Trans. Autom. Control
,
22
, No.
2
, pp.
212
222
.
12.
Utkin
,
V. I.
,
1984
, “
Variable Structure Systems: Present and Future
,”
Autom. Remote Control (Engl. Transl.)
,
4
, No.
9
, pp.
1105
1120
.
13.
DeCarlo
,
R. A.
,
Z˙ak
,
S. H.
, and
Mathews
,
G. P.
,
1988
, “
Variable Structure Control of Nonlinear Multivariable Systems: A Tutorial
,”
Proc. IEEE
,
76
, No.
3
, pp.
212
232
.
14.
Hung
,
J. Y.
,
Gao
,
W. B.
, and
Hung
,
J. C.
,
1993
, “
Variable Structure Control: A Survey
,”
IEEE Trans. Ind. Electron.
,
40
, No.
1
, pp.
2
22
.
15.
Milosavljevic´
,
Cˇ.
,
1985
, “
General Conditions for the Existence of a Quasisliding Mode on the Switching Hyperplane in Discrete Variable Structure Systems
,”
Autom. Remote Control (Engl. Transl.)
,
46
, No.
3
, pp.
307
314
.
16.
Sarpturk
,
S. Z.
,
Istefanopulos
,
Y.
, and
Kaynak
,
O.
,
1987
, “
On the stability of Discrete-time Sliding Mode Control Systems
,”
IEEE Trans. Autom. Control
,
32
, No.
10
, pp.
930
932
.
17.
Furuta
,
K.
,
1990
, “
Sliding Mode Control of a Discrete System
,”
Syst. Control Lett.
,
14
, pp.
145
152
.
18.
Sira-Ramı´rez
,
H.
,
1991
, “
Non-linear Discrete Variable Structure Systems in Quasi-sliding Mode
,”
Int. J. Control
,
54
, No.
5
, pp.
1171
1187
.
19.
Drakunov
,
S.
, and
Utkin
,
V. I.
,
1992
, “
Sliding Mode Control in Dynamic Systems
,”
Int. J. Control
,
55
, No.
4
, pp.
1029
1037
.
20.
Yu, X. H., 1993, “Conditions for the Existence of Discrete-time Sliding Mode,” Proc. IFAC 12th World Congress, Vol. 2, pp. 215–218.
21.
Su, W.-C., Drakunov, S. V., and O¨zgu¨ner, U¨., 1996, “Implementation of Variable Structure Control for Sampled-data Systems,” Robust Control via Variable Structure and Lyapunov Techniques, F. Garofalo and L. Glielmo, eds., Vol. 217 of Lecture Notes in Control and Information Sciences, Springer-Verlag, pp. 87–106.
22.
Young
,
K. D.
, and
O¨zgu¨ner
U¨.
,
1996
, “
Co-states for Sliding Mode Design in Linear Systems
,”
Syst. Control Lett.
,
27
, No.
4
, pp.
233
242
.
23.
Chen
,
X.
, and
Fukuda
,
T.
,
1997
, “
Computer-controlled Continuous-time Variable Structure Systems with Sliding Modes
,”
Int. J. Control
,
67
, No.
4
, pp.
619
639
.
24.
Wang
,
W.-J.
,
Wu
,
G.-H.
, and
Yang
,
D.-C.
,
1994
, “
Variable Structure Control Design for Uncertain Discrete-time Systems
,”
IEEE Trans. Autom. Control
,
39
, No.
1
, pp.
99
102
.
25.
Pan
,
Y.
, and
Furuta
,
K.
,
1997
, “
Discrete-time VSS Controller Design
,”
Int. J. Robust and Nonlinear Control
,
7
, No.
4
, pp.
373
386
.
26.
Chan
,
C. Y.
,
1991
, “
Servo-systems with Discrete-variable Structure Control
,”
Syst. Control Lett.
,
17
, No.
4
, pp.
321
325
.
27.
Pan
,
Y.
, and
Furuta
,
K.
,
1994
, “
VSS Controller Design for Discrete-time Systems
,”
Control-Theory and Advanced Technology
,
10
, No.
4
, pp.
669
687
.
28.
Pieper
,
J. K.
, and
Surgenor
,
B. W.
,
1993
, “
Discrete Sliding Control of a Coupled-drives Apparatus with Optimal Sliding Surface and Switching Gain
,”
IEE Proc.-D: Control Theory Appl.
,
140
, No.
2
, pp.
70
78
.
29.
Furuta, K., and Pan, Y., 1995, “A New Approach to Design a Sliding Sector for VSS Controller,” Proc. American Control Conference, pp. 1304–1308.
30.
Won, M., 1994, Multiple Surface Sliding Control with Application to Engine Control, Ph.D. thesis, Mechanical Engineering, University of California at Berkeley.
31.
Eun
,
Y.
, and
Cho
,
D.
,
1999
, “
Robustness of Multivariable Discrete-time Variable Structure Control
,”
Int. J. Control
,
72
, No.
12
, pp.
1106
1115
.
32.
Misawa
,
E. A.
,
1997
, “
Discrete-time Sliding Mode Control: The Linear Case
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, No.
4
, pp.
819
821
.
33.
Cho
,
D.
,
Kato
,
Y.
, and
Spilman
,
D.
,
1993
, “
Sliding Mode and Classical Controllers in Magnetic Levitation Systems
,”
IEEE Control Syst. Mag.
,
13
, No.
1
, pp.
42
48
.
34.
Choi, B.-K., 1999, A Study on High Precision Contouring Control for CNC Machining Center, Ph.D. thesis, School of Electrical Engineering, Seoul National University. (in Korean).
35.
Na, I. J., Choi, C. H., Jang, T. J., Choi, B.-K., and Song, O. S., 1996, “Contour Error Analysis and Gain Tuning for CNC Machining Center,” Proc. 4th International Workshop on Advanced Motion Control, Vol. 1, pp. 197–202.
You do not currently have access to this content.