In discrete-time systems, instead of having a hyperplane as in the continuous case, there is a countable set of points comprising a so-called lattice; and the surface on which these sliding points lie is the latticewise hyperplane. In this paper the concept of multivariable discrete-time sliding mode is clarified and new sufficient conditions for the existence of the sliding mode are presented. A new control design using the properties of discrete sliding is proposed, and the behavior of the system in the sliding mode is studied. Furthermore, the stabilization of discrete-time systems and an optimal sliding lattice are considered. [S0022-0434(00)02804-5]

1.
Utkin
,
V. I.
,
1977
, “
Variable structure systems with sliding modes
,”
IEEE Trans. Autom. Control
,
22
, pp.
212
222
.
2.
Utkin. V. I., 1992, Sliding Modes in Control and Optimization, Springer-Verlag, Berlin.
3.
Baida
,
S. V.
,
1993
, “
Unit sliding mode control in continuous and discrete-time systems
,”
Int. J. Control
,
57
, pp.
1125
1132
.
4.
Bartolini
,
G.
,
Ferrara
,
A.
, and
Utkin
,
V. I.
,
1995
, “
Adaptive sliding mode control in discrete-time systems
,”
Automatica
,
31
, pp.
769
773
.
5.
Chan
,
C. Y.
,
1999
, “
Discrete adaptive quasi-sliding mode control
,”
Int. J. Control
,
72
, pp.
365
373
.
6.
Chan
,
C. Y.
,
1994
, “
Robust discrete-time sliding mode controller
,”
Syst. and Control Lett.
,
23
, pp.
371
374
.
7.
Chen
,
X.
, and
Fukuda
,
T.
,
1999
, “
Adaptive quasi-sliding mode control for discrete-time multivariable systems
,”
Int. J. Control
,
72
, pp.
133
140
.
8.
Drakunov
,
S. V.
, and
Utkin
,
V. I.
,
1992
, “
Sliding mode in dynamic systems
,”
Int. J. Control
,
55
, pp.
1029
1037
.
9.
Furuta
,
K.
,
1990
, “
Sliding mode control of a discrete system
,”
Syst. and Control. Lett.
,
14
, pp.
145
152
.
10.
Corradini
,
M. L.
, and
Orlando
,
G.
,
1998
, “
Variable structure control of discretized continuous-time systems
,”
IEEE Trans. Autom. Control
,
43
, pp.
1329
1333
.
11.
Gao
,
W.
,
Wang
,
Y.
, and
Homaifa
,
A.
,
1995
, “
Discrete-time variable structure control
,”
IEEE Trans. Ind. Electron.
,
42
, pp.
117
122
.
12.
Koshkouei, A. J., and Zinober, A. S. I., 1996, “Discrete-time sliding mode control design,” Proc. 13th IFAC Congress, Vol. G, pp. 481–486.
13.
Koshkouei, A. J., and Zinober, A. S. I., 1996, “Sliding mode state observers for SISO linear discrete-time Systems,” Proc. UKACC Int. Conference on Control’96, Exeter, pp. 837–842.
14.
Koshkouei, A. J., and Zinober, A. S. I., 1996, “Sliding lattice design for discrete-time linear multivariable systems,” Proc. 35th IEEE Conference on Decision and Control, Kobe, pp. 1497–1502.
15.
Kotta
,
U.
,
1989
, “
Comments on ‘On the stability of discrete-time sliding mode control systems’
,”
IEEE Trans. Autom. Control
,
34
, pp.
1021
1022
.
16.
Milosavljevic´
,
C.
,
1985
, “
General conditions for the existence of a quasisliding on the switching hyperplane in discrete variable structure systems
,”
Automat. Remote Control
,
46
, pp.
307
314
.
17.
Sarpturk
,
S. Z.
,
Istefanopulos
,
Y.
, and
Kaynak
,
O.
,
1987
, “
On the stability of discrete-time sliding mode control systems
,”
IEEE Trans. Autom. Control
,
32
, pp.
930
932
.
18.
Sira-Ramı´rez
,
H.
,
1991
, “
Non-linear discrete variable structure systems in quasi-sliding mode
,”
Int. J. Control
,
54
, pp.
1171
1187
.
19.
Spurgeon, S. K., 1991, “Sliding mode control design for uncertain discrete-time systems,” Proc. 30th IEEE Conference on Decision and Control, Brighton, pp. 2136–2141.
20.
Spurgeon
,
S. K.
,
1992
, “
Hyperplane design techniques for discrete-time variable structure control systems
,”
Int. J. Control
,
55
, pp.
445
456
.
21.
Su, W.-C., Drakunov, S. V., Ozgu¨ner, U¨., and Redmill, K., 1995, “OT2 sliding mode control on a flexible structure,” Proc. Amer. Control Conference, Seattle, pp. 1318–1322.
22.
Utkin, V. I., 1994, “Sliding mode control in discrete-time and difference systems,” Variable Structure and Lyapunov Control, Zinober, A. S. I., ed., Springer-Verlag, Berlin.
23.
Yu, X., 1994, “Digital variable structure control with the pseudo-sliding modes,” Variable Structure and Lyapunov Control, Zinober, A. S. I., ed., Springer-Verlag, Berlin.
24.
Yu
,
X.
, and
Potts
,
R. B.
,
1992
, “
Analysis of discrete-time variable structure systems with pseudo-sliding modes
,”
Int. J. Syst. Sci.
,
23
, pp.
503
516
.
25.
Magan˜a
,
M. E.
, and
Z˙ak
,
S. H.
,
1988
, “
Robust state feedback stabilization of discrete-time uncertain dynamical systems
,”
IEEE Trans. Autom. Control
,
33
, pp.
887
891
.
26.
Corless, M., and Manela, J., 1986, “Control of uncertain discrete-time systems,” Proc. Amer. Control Conference, Seattle, pp. 515–520.
27.
Sezer
,
M. E.
, and
Sˇiljak
,
D. D.
,
1988
, “
Robust stability of discrete systems
,”
Int. J. Control
,
48
, pp.
2055
2063
.
28.
Yaz
,
E.
, and
Niu
,
X.
,
1989
, “
Stability robustness of discrete-time systems in the presence of uncertainty
,”
Int. J. Control
,
50
, pp.
173
182
.
29.
Yaz
,
E.
,
1991
, “
Robustness of discrete-time systems for unstructured stochastic perturbations
,”
IEEE Trans. Autom. Control
,
36
, pp.
867
869
.
30.
Barnett, S., 1983, Polynomials and Linear Control Systems, Marcel Dekker, New York.
31.
Ogata, K., 1995, Discrete-Time Control Systems, Prentice-Hall, New Jersey.
32.
Furuta
,
K.
, and
Kim
,
B. S.
,
1987
, “
Pole assignment in a specified disk
,”
IEEE Trans. Autom. Control
,
32
, pp.
423
427
.
33.
Young
,
K. D.
,
Kokotovic´
,
P. V.
, and
Utkin
,
V. I.
,
1977
, “
A singular perturbation analysis of high-gain feedback systems
,”
IEEE Trans. Autom. Control
,
22
, pp.
931
937
.
34.
Wang
,
W.-J.
,
Wu
,
G.-H.
, and
Yang
,
D.-C.
,
1994
, “
Variable structure control design for uncertain discrete-time systems
,”
IEEE Trans. Autom. Control
,
39
, pp.
99
102
.
35.
Myszkorowski
,
P.
, and
Holmberg
,
U.
,
1994
, “
Comments on ‘Variable structure control design for uncertain discrete-time systems’
,”
IEEE Trans. Autom. Control
,
39
, pp.
2366
2367
.
You do not currently have access to this content.