The Perron-Frobenius root is used to measure the level of interaction in MIMO quantitative feedback design (QFT). A design approach to reduce interaction in uncertain plants via a precompensator is presented. A decentralized stability result applies if the interaction index can be made less than unity by design.
Issue Section:
Technical Briefs
1.
Horowitz
, I.
, 1979
, “QFT for uncertain MIMO systems
,” Int. J. Control
, 30
, pp. 81
–106
.2.
Horowitz
, I.
, 1982
, “Improved technique for uncertain MIMO systems
,” Int. J. Control
, 36
, pp. 977
–988
.3.
Horowitz
, I.
, 1991
, “Survey of Quantitative Feedback Theory (QFT)
,” Int. J. Control
, 53
, No. 2
, pp. 255
–291
.4.
Suh, N. P., 1990, Principles of Design, Oxford University Press.
5.
Nwokah
, O. D. I.
, Nordgren
, R. E.
, and Grewal
, G. S.
, 1995
, “Inverse Nyquist Array: A quantitative theory
,” IEE Proc.-D: Control Theory Appl.
, 142
, No. 1
, pp. 23
–30
.6.
Yaniv, O., and Chepovetsky, I., 1995, “Robust control of MIMO plants: Non-diagonal QFT design,” Quantitative and Parametric Feedback Theory Symposium, Purdue University, Aug., pp. 69–78.
7.
Yaniv
, O.
, 1995
, “MIMO QFT using non-diagonal controllers
,” Int. J. Control
, 61
, No. 1
, pp. 245
–253
.8.
Cheng, R. P., Tischler, M. B., and Biezad, D. J., 1995, “Rotorcraft Flight Control design using Quantitative Feedback Theory and Dynamic Crossfeeds,” Quantitative and Parametric Feedback Theory Symposium, Purdue University, IN, Aug., pp. 23–39.
9.
Boje, E., 1999, “Quantitative Digital Design of Crossfeed and Feedback Controllers for the UH-60 Black Hawk Helicopter,” International Symposium on Quantitative Feedback Theory and Robust Frequency Domain Methods, University of Natal, Durban, 26 and 27 Aug.
10.
Chang, J.-C, Chang Y.-H, and Chen, L.-W, 1998, “Robust Decoupled Controller Design with Quantitative Feedback Theory,” American Control Conference, Philadelphia, Pennsylvania, June, pp. 2481–2485.
11.
Maciejowski, J. M., 1989, Multivariable Feedback Design, Addison-Wesley, Reading, MA.
12.
Boje, E., Nwokah, O. D. I., and Jennings, G., 1999, “Quantitative Design of SMIB Power System Stabilisers using Decoupling Theory,” 1999 IFAC World Congress, Beijing, China, 5–9 July.
13.
Franchek
, M. A.
, Herman
, P.
, and Nwokah
, O. D. I.
, 1997
, “Robust Non-diagonal Controller Design for Uncertain Multivariable Regulating Systems
,” ASME J. Dyn. Syst., Meas., Control
, 119
, pp. 80
–85
.14.
Berman, A., and Plemmons, R. J., 1979, Nonnegative matrices in the Mathematical Sciences, Academic Press, New York.
15.
Seneta, E., 1981, Non-negative Matrices and Markov Chains, Springer-Verlag, New York.
16.
Nwokah
, O. D. I.
, and Perez
, R.
, 1991
, “On Multivariable Stability in the Gain Space
,” Automatica
, 27
, No. 6
, pp. 975
–983
.17.
Limebeer
, D. J. N.
, 1982
, “The application of generalised diagonal dominance to linear system stability theory
,” Int. J. Control
, 36
, No. 2
, 185
–212
.18.
Lancaster, P., and Tismenetsky, M., 1985, The Theory of Matrices (Second Edition), Academic Press, NY.
19.
Gjo̸sæter
, O. B.
, and Foss
, B. A.
, 1999
, “On the use of diagonal control versus decoupling for ill conditioned processes
,” Automatica
, 33
, No. 3
, pp. 427
–432
.20.
Boje
, E.
, and Nwokah
, O. D. I.
, 1999
, “Quantitative Multivariable Feedback Design for a Turbofan Engine with Forward Path Decoupling
” International Journal of Robust and Non-linear Control
, 9
, No. 12
, pp. 857
–882
.21.
Boje, E., and Nwokah, O. D. I., 1997, “Quantitative Feedback Design Using Forward Path Decoupling,” Symposium on Quantitative Feedback Theory and Other Frequency Domain Methods, University of Strathclyde, 21–22 Aug., pp. 185-191.
Copyright © 2001
by ASME
You do not currently have access to this content.