New stability conditions for discrete singularly perturbed systems are presented in this study. The corresponding slow and fast subsystems of the original discrete singularly perturbed system are first derived. The observer-based controllers for the slow and the fast subsystems are then separately designed and a composite observer-based controller for the original system is subsequently synthesized from these observer-based controllers. Finally, a frequency domain ε-dependent stability criterion for the original discrete singularly perturbed system under the composite observer-based controller is proposed. If any one condition of this criterion is fulfilled, stability of the original system by establishing that of its corresponding slow and fast subsystems is thus investigated. An illustrative example is given to demonstrate that the upper bound of the singular perturbation parameter ε can be obtained by examining this criterion.

1.
Kokotovic, P. V., Khalil, H. K., and O’Reilly, J., 1986, Singular Perturbation Methods in Control: Analysis and Design, Academic Press, New York.
2.
Li
,
T. H. S.
, and
Li
,
J. H.
,
1992
, “
Stabilization Bound of Discrete Two-Time-Scale Systems
,”
Syst. Control Lett.
,
18
, pp.
479
489
.
3.
Litkouhi
,
B.
, and
Khalil
,
H.
,
1985
, “
Multirate and Composite Control of Two-Time-Scale Discrete-Time Systems
,”
IEEE Trans. Autom. Control.
,
30
, pp.
645
651
.
4.
Feng
,
W.
,
1988
, “
Characterization and Computation for The Bound ε* in Linear Time-invariant Singularly Perturbed Systems
,”
Syst. Control Lett.
,
11
, pp.
195
202
.
5.
Chen
,
B. S.
, and
Lin
,
C. L.
,
1990
, “
On The Stability Bounds of Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control.
,
35
, pp.
1265
1270
.
6.
Sen
,
S.
, and
Datta
,
K. B.
,
1993
, “
Stability Bounds of Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control.
,
38
, pp.
302
304
.
7.
Pan
,
S. T.
,
Hsiao
,
F. H.
, and
Teng
,
C. C.
,
1996
, “
Stability Bound of Multiple Time-delay Singularly Perturbed Systems
,”
Electron. Lett.
,
32
, pp.
1327
1328
.
8.
Hsiao
,
F. H.
,
Pan
,
S. T.
, and
Teng
,
C. C.
,
1997
, “
D-Stabilization Bound Analysis for Discrete Multiparameter Singularly Perturbed Systems
,”
IEEE Trans. Circuits Syst.
, Part I,
44
, pp.
347
351
.
9.
Naidu, D. S., and Rao, A. K., 1985, Singular Perturbation Analysis of Discrete Control Systems, Springer-Verlag, Berlin.
10.
Chou
,
J. H.
, and
Chen
,
B. S.
,
1990
, “
New Approach for The Stability Analysis of Interval Matrices
,”
Control-Theory and Advanced Technology
,
6
, pp.
725
730
.
11.
Mahmoud
,
M. S.
,
1982
, “
Order Reduction and Control of Discrete Systems
,”
IEE Proceeding—Control Theory Appl.
,
129
, pp.
129
135
.
12.
Saksena
,
V. R.
,
O’Reilly
,
J.
, and
Kokotovic
,
P. V.
,
1984
, “
Singular Perturbations and Time Scale Methods in Control Theory—Survey 1976–1983
,”
Automatica
,
20
, pp.
273
293
.
13.
Oloomi
,
H.
, and
Sawan
,
M. E.
,
1987
, “
The Observer-Based Controller Design of Discrete-Time Singularly Perturbed Systems
,”
IEEE Trans. Autom. Control.
,
32
, pp.
246
248
.
14.
Li
,
J. H.
, and
Li
,
T. H. S.
,
1995
, “
On the Composite and Reduced Observer-based Control of Discrete Two-Time-Scale Systems
,”
J. Franklin Inst.
,
332b
, pp.
47
66
.
15.
Wang
,
M. S.
,
Li
,
T. H. S.
, and
Sun
,
Y. Y.
,
1996
, “
Design of Near-Optimal Observer-Based Controllers for Singularly Perturbed Discrete Systems
,”
JSME International Journal: Series C
,
39
, pp.
234
241
.
16.
John, W. D., 1967, Applied Complex Variables, Macmillan, New York.
You do not currently have access to this content.