As the storage capacity of hard disk drives (HDDs) increases dramatically, the demand for positioning control accuracy of a read/write head of HDD is becoming more stringent. This paper presents a tuning methodology for fixed-structure controllers using the H optimization. The tuning of a PID (Proportional plus Integral plus Derivative) controller for head positioning of an HDD is presented as an application example. The H optimization problem of fixed-structure controllers can be locally solved by using the transformation into an H synthesis problem of static output feedback control. Simulation and experimental results show the effectiveness of the proposed approach as a fine tuning method to improve controller performance without requiring profound knowledge and experiences in manual loop-shaping.

1.
Grochowski
,
E. G.
, and
Hoyt
,
R. F.
,
1996
, “
Future trends in hard disk drives
,”
IEEE Trans. Magn.
,
32
, No.
5
, pp.
1850
1854
.
2.
Steinbuch
,
M.
, and
Norg
,
M. L.
,
1998
, “
Advanced motion control: An industrial perspective
,”
European Journal of Control
,
4
, pp.
278
293
.
3.
Chew
,
K. K.
,
1995
, “
Control system challenges to high track density magnetic disk Storage
,”
IEEE Trans. Magn.
,
32
, No.
3
, pp.
1799
1804
.
4.
Gahinet
,
P.
, and
Apkarian
,
P.
,
1994
, “
A linear matrix inequality approach to H∞ control
,”
Int. J. Robust Nonlinear Control
,
4
, pp.
421
448
.
5.
Iwasaki
,
T.
, and
Skelton
,
R. E.
,
1994
, “
All controllers for the general H∞ control problem: LMI existence conditions and state space formulas
,”
Automatica
,
30
, No.
8
, pp.
1307
1317
.
6.
A˚stro¨m
,
K. J.
,
Panagopoulos
,
H.
, and
Ha¨gglund
,
T.
,
1998
, “
Design of PI controllers based on non-convex optimization
,”
Automatica
,
34
, No.
5
, pp.
585
601
.
7.
Grassi, E., and Tsakali, K., 1996, “PID controller tuning by frequency loop-shaping,” Proc. of the 35th Conf. on Decision and Control, Kobe, Japan, pp. 4776–4781.
8.
Kawabe, T., and Tagami, T., 1997, “A real coded genetic algorithm for matrix inequality design approach of robust PID controller with two degree of freedom,” Proc. of the 12th IEEE International Symposium on Intelligent Control, Istanbul, Turkey, pp. 119–124, July.
9.
Goh, K.-C., Safonov, M. G., and Papavassilopoulos, G. P., 1994, “A global optimization approach for the BMI problem,” Proc. of the 33rd Conf. on Decision and Control, Lake Buena Vista, FL, U.S.A, pp. 2009–2014, Dec.
10.
Wenk
,
C. J.
, and
Knapp
,
C. H.
,
1980
, “
Parameter optimization in linear systems with arbitrarily constrained controller structure
,”
IEEE Trans. Autom. Control
,
AC-25
, No.
3
, pp.
496
500
.
11.
Takahashi
,
R. H. C.
,
Peres
,
P. L. D.
, and
Ferreira
,
P. A. V.
,
1997
, “
Multiobjective H2/H∞ guaranteed cost PID design
,”
IEEE Control Syst. Mag.
,
17
, No.
5
, pp.
37
47
.
12.
Collins
,
E. G.
, Jr.
,
Sadhukhan
,
D.
, and
Watson
,
L. T.
,
1999
, “
Robust controller synthesis via nonlinear matrix inequalities
,”
Int. J. Control
,
72
, No.
11
, pp.
971
980
.
13.
Hassibi, A., How, J., and Boyd, S., 1999, “A path following method for solving BMI problems in control,” Proc. of the American Control Conference, San Diego, CA, pp. 1385–9.
14.
Nett, C. N., Bernstein, D. S., and Hadded, W. M., 1989, “Minimal complexity control law synthesis, part 1: Problem formulation and reduction to optimal static output feedback,” Proc. of the American Control Conf., Pittsburgh, PS, pp. 2056–2064, June.
15.
Bernstein, D. S., Haddad, W. M., and Nett, C. N., 1989, “Minimal complexity control law synthesis, part 2: Problem solution via H2/H∞ optimal static output feedback” Proc. of the American Control Conf., Pittsburgh, PS, pp. 2506–2511, June.
16.
Erwin
,
R. S.
,
Sparks
,
A. G.
, and
Bernstein
,
D. S.
,
1998
, “
Fixed-structure robust controller synthesis via decentralized static output feedback
,”
Int. J. Robust Nonlinear Control
,
8
, pp.
499
522
.
17.
Syrmos
,
V.
,
Abdallah
,
C.
,
Dorato
,
P.
, and
Grigoriadis
,
K.
,
1997
, “
Static Output Feedback-A Survey
,”
Automatica
,
33
, No.
2
, pp.
125
137
.
18.
Grigoriadis
,
K. M.
, and
Skelton
,
R. E.
,
1995
, “
Low order control design for LMI problems using alternating projection methods
,”
Automatica
,
32
, No.
8
, pp.
1117
1125
.
19.
Geromel, J. C., de Souza, C. C., and Skelton, R. E., 1994, “LMI numerical solution for output feedback stabilization,” Proc. of the American Control Conference, Baltimore, MD, June, pp. 40–44.
20.
Iwasaki
,
T.
, and
Rotea
,
M. A.
,
1997
, “
Fixed-order scaled H∞ synthesis
,”
Opt. Control Appl. Methods
,
18
, pp.
381
398
.
21.
Ghaoui
,
L. E.
,
Oustry
,
F.
, and
AitRami
,
M.
,
1997
, “
A cone complementarity linearization algorithm for static output-feedback and related problem
,”
IEEE Trans. Autom. Control
,
42
, No.
8
, pp.
1171
1176
.
22.
Ibaraki, S., and Tomizuka, M., 2000, “H∞ Optimization of Fixed Structure Controllers,” Proc. of the 2000 International Mechanical Engineering Congress and Exposition, Orlando, FL, Nov.
23.
Gahinet, P., Nemirovskii, A., Laub, A. J., and Chilali, M., 1994, “The LMI Control Toolbox,” Proc. of the 33rd Conf. on Decision and Control, Lake Buena Vista, FL, pp. 2038–2041.
24.
Ding, J., Tomizuka, M., and Numasato, H., 2000, “Design and robustness analysis of dual stage servo system,” Proc. of the American Control Conf., Chicago, IL, pp. 2605–2609, June.
You do not currently have access to this content.