A robust tracking controller for mechanical systems is proposed by combining the robust perturbation compensator which effectively attenuates the perturbation to the plant with the nominal tracking controller designed using the sliding surface. This approach enables a smooth sliding mode in tracking control loop without chattering problem. A unified view is given on a class of perturbation observers. Three kinds of equivalent expressions for the perturbation of a plant is described. In terms of the equivalents, we propose the feedforward perturbation observer (FFPO), the feedback perturbation observer (FBPO), and the sliding mode perturbation observer (SMPO). Successively, by hierarchically adopting these three observers to attenuate the residual perturbation, the hierarchical perturbation compensator (HPC) is constructed with stability analysis. The adaptive and integral property of the HPC greatly enhances the robust performance with minimal control effort. The actuator saturation issue is also considered. Experimental results demonstrate the effectiveness of the proposed controller.

1.
Morgan
,
R. G.
, and
Ozguner
,
U.
,
1985
, “
A Decentralized Variable Structure Control Algorithm for Robotic Manipulators
,”
IEEE Trans. Rob. Autom.
,
RA-1
(
1
), Mar., pp.
57
65
.
2.
Hsia
,
T. C.
,
1989
, “
A New Technique for Robust Control of Servo Systems
,”
IEEE Trans. Ind. Electron.
,
36
(
1
), Feb., pp.
1
7
.
3.
Hsia, T. C., and Gao, L. S., 1990, “Robot Manipulator Control Using Decentralized Linear Time-Invariant Time-Delayed Controllers,” 1990 IEEE Int. Conf. on Robot. and Auto., pp. 2070–2075.
4.
Youcef-Toumi
,
K.
, and
Reddy
,
S.
,
1992
, “
Analysis of Linear Time Invariant Systems With Time Delay
,”
ASME J. Dyn. Syst., Meas., Control
,
114
, Dec., pp.
544
555
.
5.
Umeno
,
T.
, and
Hori
,
Y.
, “
Robust Speed Control of DC Servomotors Using Modern Two Degree-of-Freedom Controller Design
,”
IEEE Trans. Ind. Electron.
,
38
(
5
), Oct., pp.
363
368
.
6.
Ohnishi
,
K.
,
Shibata
,
M.
, and
Murakami
,
T.
,
1996
, “
Motion Control for Advanced Mechatronics
,”
IEEE/ASME Trans. Mechatronics
,
1
(
1
), Mar., pp.
56
67
.
7.
Lee
,
H. S.
, and
Tomizuka
,
M.
,
1996
, “
Robust Motion Controller Design for High-Accuracy Positioning Systems
,”
IEEE Trans. Ind. Electron.
,
43
, Feb., pp.
48
55
.
8.
Bickel
,
R.
, and
Tomizuka
,
M.
,
1999
, “
Passivity-Based Versus Disturbance Observer Based Robot Control: Equivalence and Stability
,”
ASME J. Dyn. Syst., Meas., Control
,
121
, Mar., pp.
41
47
.
9.
Komada
,
S.
,
Machii
,
N.
, and
Hori
,
T.
,
2000
, “
Control of Redundant Manipulators Considering Order of Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
47
(
2
), Apr., pp.
413
420
.
10.
Yao
,
B.
,
Al-Majed
,
M.
, and
Tomizuka
,
M.
,
1997
, “
High-Performance Robust Motion Control of Machine Tools: An Adaptive Robust Control Approach and Comparative Experiments
,”
IEEE/ASME Trans. Mechatronics
,
2
(
2
), Jun., pp.
63
76
.
11.
Choi
,
B.-K.
,
Choi
,
C.-H.
, and
Lim
,
H.
,
1999
, “
Model-Based Disturbance Attenuation for CNC Machining Centers in Cutting Process
,”
IEEE/ASME Trans. Mechatronics
,
4
(
2
), pp.
157
168
.
12.
Eun
,
Y.
,
Kim
,
J.-H.
,
Kim
,
K.
, and
Cho
,
D.-I.
,
1999
, “
Discrete-Time Variable Structure Controller with a Decoupled Disturbance Compensator and Its Application to a CNC Servomechanism
,”
IEEE Trans., Control Syst. Technol.
7
(
4
), Jul., pp.
414
423
.
13.
Kim, B. K., Choi, H. T., Chung, W. K., and Suh, I. H., 2001, “Unified Analysis and Design of Robust Motion Controllers with 2-Loop Structure Using Robust Internal-Loop Compensator,” Proc. of 2001 American Contr. Conf. (ACC), pp. 4046–4051.
14.
de Wit
,
C.
,
Olsson
,
H.
,
Astrom
,
K. J.
, and
Lischinsky
,
P.
,
1995
, “
A New Model for Control of Systems with Friction
,”
IEEE Trans. Autom. Control
,
40
(
3
), Mar., pp.
419
425
.
15.
Baril
,
C. G.
, and
Gutman
,
P.-O.
,
1997
, “
Performance Enhancing Adaptive Friction Compensation for Uncertain Systems
,”
IEEE Trans. Control Syst. Technol.
,
5
(
5
), Sept., pp.
466
479
.
16.
Iwasaki
,
M.
,
Shibata
,
T.
, and
Matsui
,
N.
,
1999
, “
Disturbance-Observer-Based Nonlinear Friction Compensation in Table Drive System
,”
IEEE/ASME Trans. Mechatronics
,
4
(
1
), Mar., pp.
3
8
.
17.
Slotine, J.-J. E., and Li, W., 1991, Applied Nonlinear Control, Prentice Hall.
18.
Young
,
K. D.
, and
Ozguner
,
U.
,
1993
, “
Frequency shaping compensator design for sliding mode
,”
Int. J. Control
,
57
(
5
), pp.
1005
1019
.
19.
Elmali
,
H.
, and
Olgac
,
N.
,
1992
, “
Sliding Mode Control with Perturbation Estimation
,”
Int. J. Control
,
56
, pp.
923
941
.
20.
Moura
,
J. T.
,
Elmali
,
H.
, and
Olgac
,
N.
,
1997
, “
Sliding Mode Control with Sliding Perturbation Observer
,”
ASME J. Dyn. Syst., Meas., Control
,
119
, Dec., pp.
657
665
.
21.
Morari, M., and Zafiriou, E., 1989, Robust Process Control, Prentice Hall.
22.
Widraw, B., and Walach, E., 1996, Adaptive Inverse Control, Prentice Hall.
23.
Franklin, G. F., Powell, J. D., and Workman, M. L., 1990, Digital Control of Dynamic Systems, 2nd ed., Addison-Wesley, NY.
24.
Friedland B., 1996, Advanced Control System Design, Prentice Hall, NJ.
You do not currently have access to this content.