Active control of a planar Poiseuille flow can be performed by increasing or decreasing the wall temperature in proportion to the observed wall shear stress perturbation. In continuation with the work of H. H. Hu and H. H. Bau (1994, Feedback Control to Delay or Advance Linear Loss of Stability in Planar Poiseuille Flow, Proc. R. Soc. London A, 447, pp. 299–312), a linear stability analysis of such a feedback control is developed in this paper. The Poiseuille flow control problem is reduced to a modified Orr-Sommerfeld equation coupled with a heat equation. By solving numerically the coupled equations with a finite element method, many numerical results about the stability of the flow control are obtained. We focus our attention on the interpretation of the numerical results. In particular, the role of two essential parameters—the Prandtl number Pr and the control gain K—is investigated in detail. When Pr>1.31, stabilizing K is negative; while, when Pr<1.31, stabilizing K is positive. And when Pr=1.31, the flow cannot be stabilized by a real K. A comparison between symmetric two-wall control and non-symmetric one-wall control is also made.

1.
Barnwell, R. W., and Hussaini, M. Y., 1992, Natural Laminar Flow and Laminar Flow Control, Springer-Verlag.
2.
Gad-el-Hak, M., 1989, The Art of Science of Flow Control, Springer-Verlag.
3.
Liepmann
,
H. W.
,
Brown
,
G. L.
, and
Nosenchuck
,
D. M.
,
1982
, “
Control of Laminar-Instability Waves Using a New Technique
,”
J. Fluid Mech.
,
118
, pp.
187
200
.
4.
Liepmann
,
H. W.
, and
Nosenchuck
,
D. M.
,
1982
, “
Active Control of Laminar-Turbulent Transition
,”
J. Fluid Mech.
,
118
, pp.
201
204
.
5.
Metcalfe
,
R. W.
,
Rutland
,
C. J.
,
Duncan
,
J. H.
, and
Riley
,
J. J.
,
1986
, “
Numerical Simulations of Active Stabilization of Laminar Boundary Layers
,”
AIAA J.
,
24
, pp.
1494
1501
.
6.
Choi
,
H.
,
Moin
,
P.
, and
Kim
,
J.
,
1994
, “
Active Turbulence Control for Drag Reduction in Wall Bounded Flows
,”
J. Fluid Mech.
,
262
, pp.
75
110
.
7.
Joshi
,
S. S.
,
Speyer
,
J. L.
, and
Kim
,
J.
,
1997
, “
A System Theory Approach to the Feedback Stabilization of Infinitesimal and Finite-Amplitude Disturbances in Plane Poiseuille Flow
,”
J. Fluid Mech.
,
332
, pp.
157
184
.
8.
Howle
,
L. E.
,
2000
, “
The Effect of Boundary Properties on Controlled Rayleigh-Benard Convection
,”
J. Fluid Mech.
,
411
, pp.
39
58
.
9.
Or
,
A. C.
,
Kelly
,
R. E.
,
Cortelezzi
,
L.
, and
Speyer
,
J. L.
,
1999
, “
Control of Long-Wavelength Marangoni-Benard Convection
,”
J. Fluid Mech.
,
387
, pp.
321
341
.
10.
Tang
,
J.
, and
Bau
,
H. H.
,
1993
, “
Stabilization of the No-Motion State in Rayleigh-Be´nard Convection Through the Use of Feedback Control
,”
Phys. Rev. Lett.
,
70
, pp.
1795
1798
.
11.
Tang
,
J.
, and
Bau
,
H. H.
,
1995
, “
Stabilization of the No-Motion State of a Horizontal Fluid Layer Heated From Below With Joule Heating
,”
ASME J. Heat Transfer
,
117
, pp.
329
333
.
12.
Tang
,
J.
, and
Bau
,
H. H.
,
1998
, “
Experiments on the Stabilization of the No-Motion State of a Fluid Layer Heated From Below and Cooled From Above
,”
J. Fluid Mech.
,
363
, pp.
153
171
.
13.
Wang
,
Y.
,
Singer
,
J.
, and
Bau
,
H. H.
,
1992
, “
Controlling Chaos in a Thermal Convection Loop
,”
J. Fluid Mech.
,
237
, pp.
479
498
.
14.
Hu
,
H. H.
, and
Bau
,
H. H.
,
1994
, “
Feedback Control to Delay or Advance Linear Loss of Stability in Planar Poiseuille Flow
,”
Proc. R. Soc. London, Ser. A
,
447
, pp.
299
312
.
15.
Joshi
,
S. S.
,
Speyer
,
J. L.
, and
Kim
,
J.
,
1999
, “
Finite-Dimensional Optimal-Control of Poiseuille Flow
,”
J. Guid. Control Dyn.
,
22
, pp.
340
348
.
16.
Diller, T. E., and Telionis, D. P., 1989, “Time-Resolved Heat Transfer and Skin Friction Measurements in Unsteady Flow,” Advances in Fluid Mechanics Measurements, Springer-Verlag, pp. 324–355.
17.
Hanratty, T. J., and Campbell, J. A., 1983, “Measurement of Wall Shear Stress,” Fluid Mechanics Measurements, Hemisphere Publishing Co., pp. 559–615.
18.
Haritonidis, J. H., 1989, “The Measurement of Wall Shear Stress,” Advances in Fluid Mechanics Measurements, Springer-Verlag, pp. 229–261.
19.
Drazin, P. G., and Reid, W. H., 1981, Hydrodynamic Stability, Cambridge Univ. Press.
20.
IMSL, 1991, IMSL Math/Library, User’s Manual, IMSL, Houston.
21.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr-Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
, pp.
689
703
.
You do not currently have access to this content.