In this paper, the asymptotic stability for a class of neutral systems with discrete and distributed multiple time delays is considered. Discrete-delay-independent and discrete-delay-dependent criteria are proposed to guarantee stability for such systems. The resulting stability criteria are written in the form of spectral radius and linear matrix inequality (LMI). Some numerical examples are given to illustrate that our obtained results are less conservative.

1.
Chen
,
J. D.
,
Lien
,
C. H.
,
Fan
,
K. K.
, and
Cheng
,
J. S.
,
2000
, “
Delay-Dependent Stability Criterion for Neutral Time-Delays Systems
,”
Electron. Lett.
,
36
, pp.
1897
1898
.
2.
Dugard, L., and Verriest, E. I., 1997, Stability and Control of Time-Delay Systems, Springer-Verlag, London.
3.
Fridman
,
E.
,
2001
, “
New Lyapunov-Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems
,”
Syst. Control Lett.
,
43
, pp.
309
319
.
4.
Gu
,
K.
,
Han
,
Q. L.
,
Luo
,
A. C. J.
, and
Niculescu
,
S. I.
,
2001
, “
Discretized Lyapunov Functional for Systems With Distributed Delay and Piecewise Constant Coefficients
,”
Int. J. Control
,
74
, pp.
737
744
.
5.
Hale, J. K., and Verduyn Lunel, S. M., 1993, Introduction to Functional Differential Equations, Springer-Verlag, NY.
6.
Hui
,
G. Di
, and
Hu
,
G. Da
,
1997
, “
Simple Criteria for Stability of Neutral Systems With Multiple Delays
,”
Int. J. Syst. Sci.
,
28
, pp.
1325
1328
.
7.
Ivanescu
,
D.
,
Dion
,
J. M.
,
Dugard
,
L.
, and
Niculescu
,
S. I.
,
2000
, “
Dynamical Compensation for Time-Delay Systems: An LMI Approach
,”
Int. J. Robust Nonlinear Control
,
10
, pp.
611
628
.
8.
Kim
,
J. H.
,
2001
, “
Delay and its Derivative Dependent Robust Stability of Time-Delayed Linear Systems With Uncertainty
,”
IEEE Trans. Autom. Control
,
46
, pp.
789
792
.
9.
Kolmanovskii, V. B., and Myshkis, A., 1999, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publ., Dordrecht.
10.
Kolmanovskii
,
V. B.
, and
Richard
,
J. P.
,
1999
, “
Stability of Some Linear Systems With Delays
,”
IEEE Trans. Autom. Control
,
44
, pp.
984
989
.
11.
Li
,
X.
, and
de Souza
,
C. E.
,
1997
, “
Delay-Dependent Robust Stability and Stabilization of Uncertain Linear Delay Systems: A Linear Matrix Inequality Approach
,”
IEEE Trans. Autom. Control
,
42
, pp.
1144
1148
.
12.
Lien
,
C. H.
,
Yu
,
K. W.
, and
Hsieh
,
J. G.
,
2000
, “
Stability Conditions for a Class of Neutral Systems With Multiple Time Delays
,”
J. Math. Anal. Appl.
,
245
, pp.
20
27
.
13.
Ni, B., and Han, Q. L., 2001, “On Stability for a Class of Neutral Delay-Differential Systems,” Proc. of American Control Conf., Arlington, VA, pp. 25–27.
14.
Niculescu, S. I., 2000, “Further Remarks on Delay-Dependent Stability of Linear Neutral Systems,” Proc. of MTNS 2000, Perpignan, France.
15.
Niculescu, S. I., Neto, T. A., Dion, J. M., and Dugard, L., 1995, “Delay-Dependent Stability of Linear Systems With Delayed State: An LMI Approach,” Proc. of 34th Conf. Decision and Control, New Orleans, LA, Dec., 2, pp. 1495–1496.
16.
Ortega, J. M., 1972, Numerical Analysis, Academic Press, NJ.
17.
Park
,
J. H.
, and
Won
,
S.
,
1999
, “
Asymptotic Stability of Neutral Systems With Multiple Delays
,”
J. Optim. Theory Appl.
,
103
, pp.
183
200
.
18.
Park
,
J. H.
, and
Won
,
S.
,
2000
, “
Stability Analysis for Neutral Delay-Differential Systems
,”
J. Franklin Inst.
,
337
, pp.
1
9
.
19.
Park
,
P. G.
,
1999
, “
A Delay-Dependent Stability Criterion for Systems With Uncertain Time-Invariant Delays
,”
IEEE Trans. Autom. Control
,
44
, pp.
876
877
.
20.
Yan
,
J. J.
,
2001
, “
Robust Stability Analysis of Uncertain Time Delay Systems With Delay-Dependence
,”
Electron. Lett.
,
37
, pp.
135
137
.
21.
Juang
,
Y. T.
,
Kuo
,
T. S.
, and
Hsu
,
C. F.
,
1987
, “
Stability Robustness Analysis of Digital Control Systems in State-Space Models
,”
Int. J. Control
,
46
, pp.
1547
1556
.
22.
Boyd, S., Ghaoui, L. El, Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
23.
Chou
,
J. H.
,
Chen
,
S. H.
, and
Li
,
J. J.
,
2000
, “
Application of the Taguchi-Genetic Method to Design an Optimal Gray-Fuzzy Controller of a Constant Turning Force System
,”
J. Mater. Process. Technol.
,
105
, pp.
333
343
.
You do not currently have access to this content.