In this paper, we provide the annular bound, i.e., lower and upper circular bound, for the roots of characteristic equations of uncertain discrete systems. Such an annular bound can be easily obtained by estimating the largest nonnegative zero of the specific polynomial. Two examples are also provided to show that the proposed annular bound is less conservative than the existing one reported recently.
Issue Section:
Technical Papers
1.
Chukwu, E. N., 1992, Stability and Time-Optimal Control of Hereditary Systems, Academic Press, New York.
2.
Elmali
, H.
, Renzulli
, M.
, and Olgac
, N.
, 2000
, “Experimental Comparison of Delayed Resonator and PD Controlled Vibration Absorbers Using Electromagnetic Actuators
,” ASME J. Dyn. Syst., Meas., Control
, 122
, pp. 514
–520
.3.
Hsiao
, F. H.
, Pan
, S. T.
, and Teng
, C. C.
, 1997
, “Robust Controller Design for Discrete Uncertain Multiple Time-Delay Systems
,” ASME J. Dyn. Syst., Meas., Control
, 119
, pp. 223
–225
.4.
Insperger
, T.
, and Stepan
, G.
, 2002
, “Semi-Discretization Method for Delayed Systems
,” Int. J. Numer. Methods Eng.
, 55
, pp. 503
–518
.5.
Jalili
, N.
, and Esmailzadeh
, E.
, 2001
, “Optimum Active Vehicle Suspensions With Actuator Time Delay
,” ASME J. Dyn. Syst., Meas., Control
, 123
, pp. 54
–61
.6.
Kapila
, V.
, Tzes
, A.
, and Yan
, Q.
, 2000
, “Closed-Loop Input Shaping for Flexible Structures Using Time-Delay Control
,” ASME J. Dyn. Syst., Meas., Control
, 122
, pp. 454
–460
.7.
Mori
, T.
, Fukuma
, N.
, and Kuwahara
, M.
, 1982
, “Delay-Independent Stability Criteria for Discrete-Delay Systems
,” IEEE Trans. Autom. Control
, 27
, pp. 964
–966
.8.
Sun
, Y. J.
, and Yu
, G. J.
, 1997
, “Delay-Dependent Exponential Stability Criteria for Nonlinear Time-Varying Discrete Systems With Multiple Time Delays
,” J. Franklin Inst.
, 334B
(4
), pp. 659
–666
.9.
Sun
, Y. J.
, and Hsieh
, J. G.
, 1997
, “Exponential Tracking Control for a Class of Uncertain Systems With Time-Varying Arguments and Deadzone Nonlinearities
,” ASME J. Dyn. Syst., Meas., Control
, 119
, pp. 825
–830
.10.
Sun
, Y. J.
, Hsieh
, J. G.
, and Yang
, H. C.
, 1997
, “On the Stability of Uncertain Systems With Multiple Time-Varying Delays
,” IEEE Trans. Autom. Control
, 42
(1
), pp. 101
–105
.11.
Tsao
, T. C.
, 1994
, “Simple Stability Criteria for Nonlinear Time-Varying Discrete Systems
,” Syst. Control Lett.
, 22
, pp. 223
–225
.12.
Wang, R. J., and Wang, W. J., 1993, “Pole-Assignment Robustness for Discrete-Time Systems With Multiple Time-Delays,” Proc. of 32nd Conf. on Decision and Control, San Antonio, TX, pp. 3831–3834.
13.
Wu
, J. W.
, and Hong
, K. S.
, 1994
, “Delay-Independent Exponential Stability Criteria for Time-Varying Discrete Delay Systems
,” IEEE Trans. Autom. Control
, 39
, pp. 811
–814
.14.
Boese
, F. G.
, and Luther
, W. J.
, 1989
, “A Note on a Classical Bound for the Moduli of all Zeros of Polynomial
,” IEEE Trans. Autom. Control
, 34
, pp. 998
–1001
.15.
Datt
, B.
, and Govil
, N. K.
, 1978
, “On the Location of Zeros of Polynomial
,” J. Approx. Theory
, 24
, pp. 78
–82
.16.
Joyal
, A.
, Labelle
, G.
, and Rahman
, Q. I.
, 1967, “On the Locations of Zeros of Polynomials,” Canadian Math. Bulletin, 10, pp. 53–63.17.
Sun
, Y. J.
, and Hsieh
, J. G.
, 1996
, “A Note on the Circular Bound of Polynomial Zeros
,” IEEE Trans. Circuits Syst.
, 43
, pp. 476
–478
.18.
Sun
, Y. J.
, Horng
, J. H.
, and Hsieh
, J. G.
, 1996
, “Annular Bounds for the Zeros of a Family of Complex-Coefficient Polynomials
,” J. Chinese Inst. Elect. Eng.
, 3
(1
), pp. 97
–100
.19.
Zeheb
, E.
, 1991
, “On the Largest Modulus of Polynomial Zero
,” IEEE Trans. Circuits Syst.
, 38
, pp. 333
–337
.20.
Zilovic
, M. S.
, Roytman
, L. M.
, Combettes
, P. L.
, and Swamy
, M. N. S.
, 1992
, “A Bound for the Zeros of Polynomials
,” IEEE Trans. Circuits Syst.
, 39
, pp. 476
–478
.21.
Bronshtein, I. N., and Semendyayev, K. A., 1979, Handbook of Mathematics, Ven Nostrand Reinhold, New York.
22.
Buchanan, J. L., and Turner, P. R., 1992, Numerical Methods and Analysis, McGraw-Hill, New York.
Copyright © 2003
by ASME
You do not currently have access to this content.