An alternative delay-dependent controller design is proposed for linear, continuous, time-invariant systems with unknown state delay. The resulting delay-dependent control criterion is obtained in terms of Park’s inequality for bounding cross term. The controller determined by a convex optimization algorithm with linear matrix inequality (LMI) constraints, guarantees the asymptotic stability of the closed-loop systems and reduces the effect of the disturbance input on the controlled output to within a prescribed level. A numerical example illustrates the effectiveness of our method.
Issue Section:
Technical Briefs
1.
Hale, J., and Lunel, S. M. V., 1993, “Introduction to Functional Differential Equations,” New York, Springer.
2.
Wang
, Z. Q.
, and Skogestad
, S.
, 1993
, “Robust Control of Time-Delay Systems Using the Smith Predictor
,” Int. J. Control
, 57
(6
), 1405
–1420
.3.
Astrom
, K. J.
, Hang
, C. C.
, and Lin
, B. C.
, 1994
, “A New Smith Predictor for Controlling a Process With an Integrator and Long Dead-Time
,” IEEE Trans. Autom. Control
, 39
, 343
–345
.4.
Matausek
, M. R.
, and Micic
, A. D.
, 1996
, “A Modified Smith Predictor for Controlling a Process With an Integrator and Long Dead-Time
,” IEEE Trans. Autom. Control
, 41
, 1199
–1203
.5.
Niculescu, S. I., Verriest, E. I., Dugard, L., and Dion, J. M., 1997, “Stability and Robust Stability of Time-Delay Systems: A Guided Tour,” In: L. Dugard and E. I. Verriest, (Eds), Stability and control of time-delay systems, Lecture notes in control and information science, London, Springer. Vol. 228, pp. 1–71.
6.
Su
, T. J.
, and Huang
, C. D.
, 1992
, “Robust Stability of Delay Dependence for Linear Uncertain Systems
,” IEEE Trans. Autom. Control
, 37
, 1656
–1659
.7.
Su
, J. H.
, 1994
, “Further Results on Robust Stability of Linear Systems With a Single Time-Delay
,” Syst. Control Lett.
, 23
, 375
–379
.8.
Xu
, B.
, 1994
, “Comments on Robust Stability of Delay Dependence for Linear Uncertain Systems
,” IEEE Trans. Autom. Control
, 39
, 2365
2365
.9.
Niculescu, S. I., Neto, A. T., Dion, J. M., and Dugard, L., 1995, “Delay-Dependent Stability of Linear Systems With Delayed State: An LMI Approach,” In Proc. 34th Conf. Decision and Control, New Orleans, LA, Dec., pp. 1495–1496.
10.
Li
, X.
, and de Souza
, C. E.
, 1997
, “Criteria for Robust Stability and Stabilization of Uncertain Linear Systems With State Delay
,” Automatica
, 33
(9
), 1657
–1662
.11.
Park
, P. G.
, 1999
, “A Delay-Dependent Stability Criterion for Systems With Uncertain Time-Invariant Delays
,” IEEE Trans. Autom. Control
, 44
(4
), 876
–877
.12.
Chen
, J.
, Xu
, D.
, and Shafai
, B.
, 1995
, “On Sufficient Conditions for Stability Independent of Delay
,” IEEE Trans. Autom. Control
, 40
, 1675
–1680
.13.
Kim
, J. H.
, 2001
, “Delay and its Time-Derivative Dependent Robust Stability of Time-Delayed Systems With Uncertainties
,” IEEE Trans. Autom. Control
, 46
(5
), 789
–792
.14.
Lee
, J. H.
, Kim
, S. W.
, and Kwon
, W. H.
, 1994
, “Memoryless H∞ Controllers for State Delayed Systems
,” IEEE Trans. Autom. Control
, 39
, 159
–162
.15.
Choi
, H. H.
, and Chung
, M. J.
, 1995
, “Memoryless H∞ Controller Design for Linear Systems With Delayed State and Control
,” Automatica
, 31
, 917
–919
.16.
Choi
, H. H.
, and Chung
, M. J.
, 1997
, “An LMI Approach to H∞ Controller Design for Linear Time Delay Systems
,” Automatica
, 33
, 737
–739
.17.
Kim
, J. H.
, and Park
, B. H.
, 1999
, “H∞ State Feedback Control for Generalized Continuous/Discrete Time-Delay Systems
,” Automatica
, 35
, 1443
–1451
.18.
Ge
, J. H.
, Frank
, P. M.
, and Lin
, C. E.
, 1996
, “Robust H∞ State Feedback Control for Linear Systems With State Delay and Parameter Uncertainty
,” Automatica
, 32
(6
), 1183
–1185
.19.
Yu
, L.
, Chu
, J.
, and Su
, H. Y.
, 1996
, “Robust Memoryless H∞ Controller Design for Linear Time-Delay Systems With Norm Bounded Time-Varying Uncertainty
,” Automatica
, 32
(12
), 1759
–1762
.20.
de Souza
, C. E.
, and Li
, X.
, 1999
, “Delay-Dependent Robust H∞ Control of Uncertain Linear State-Delayed Systems
,” Automatica
, 35
, 1313
–1321
.21.
He
, J. B.
, Wang
, Q. G.
, and Lee
, T. H.
, 1998
, “H∞ Disturbance Attenuation for State Delayed Systems
,” Syst. Control Lett.
, 33
, 105
–114
.22.
Doyle
, J. C.
, Glover
, K.
, Khargonekar
, P. P.
, and Francis
, B. A.
, 1989
, “State-Space Solutions to H2 and H∞ Control Problems
,” IEEE Trans. Autom. Control
, 34
, 831
–846
.23.
Iwasaki
, T.
, and Skelton
, R. E.
, 1994
, “All Controllers for the H∞ Control Problem: LMI Existence Conditions and State Space Formulas
,” Automatica
, 30
, 1307
–1317
.24.
Boyd, S., EI Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, “Linear Matrix Inequalities in System and Control Theory,” SIAM Studies in Applied Mathematics, Philadelphia, Vol. 15.
Copyright © 2004
by ASME
You do not currently have access to this content.