An alternative delay-dependent H controller design is proposed for linear, continuous, time-invariant systems with unknown state delay. The resulting delay-dependent H control criterion is obtained in terms of Park’s inequality for bounding cross term. The H controller determined by a convex optimization algorithm with linear matrix inequality (LMI) constraints, guarantees the asymptotic stability of the closed-loop systems and reduces the effect of the disturbance input on the controlled output to within a prescribed level. A numerical example illustrates the effectiveness of our method.

1.
Hale, J., and Lunel, S. M. V., 1993, “Introduction to Functional Differential Equations,” New York, Springer.
2.
Wang
,
Z. Q.
, and
Skogestad
,
S.
,
1993
, “
Robust Control of Time-Delay Systems Using the Smith Predictor
,”
Int. J. Control
,
57
(
6
),
1405
1420
.
3.
Astrom
,
K. J.
,
Hang
,
C. C.
, and
Lin
,
B. C.
,
1994
, “
A New Smith Predictor for Controlling a Process With an Integrator and Long Dead-Time
,”
IEEE Trans. Autom. Control
,
39
,
343
345
.
4.
Matausek
,
M. R.
, and
Micic
,
A. D.
,
1996
, “
A Modified Smith Predictor for Controlling a Process With an Integrator and Long Dead-Time
,”
IEEE Trans. Autom. Control
,
41
,
1199
1203
.
5.
Niculescu, S. I., Verriest, E. I., Dugard, L., and Dion, J. M., 1997, “Stability and Robust Stability of Time-Delay Systems: A Guided Tour,” In: L. Dugard and E. I. Verriest, (Eds), Stability and control of time-delay systems, Lecture notes in control and information science, London, Springer. Vol. 228, pp. 1–71.
6.
Su
,
T. J.
, and
Huang
,
C. D.
,
1992
, “
Robust Stability of Delay Dependence for Linear Uncertain Systems
,”
IEEE Trans. Autom. Control
,
37
,
1656
1659
.
7.
Su
,
J. H.
,
1994
, “
Further Results on Robust Stability of Linear Systems With a Single Time-Delay
,”
Syst. Control Lett.
,
23
,
375
379
.
8.
Xu
,
B.
,
1994
, “
Comments on Robust Stability of Delay Dependence for Linear Uncertain Systems
,”
IEEE Trans. Autom. Control
,
39
,
2365
2365
.
9.
Niculescu, S. I., Neto, A. T., Dion, J. M., and Dugard, L., 1995, “Delay-Dependent Stability of Linear Systems With Delayed State: An LMI Approach,” In Proc. 34th Conf. Decision and Control, New Orleans, LA, Dec., pp. 1495–1496.
10.
Li
,
X.
, and
de Souza
,
C. E.
,
1997
, “
Criteria for Robust Stability and Stabilization of Uncertain Linear Systems With State Delay
,”
Automatica
,
33
(
9
),
1657
1662
.
11.
Park
,
P. G.
,
1999
, “
A Delay-Dependent Stability Criterion for Systems With Uncertain Time-Invariant Delays
,”
IEEE Trans. Autom. Control
,
44
(
4
),
876
877
.
12.
Chen
,
J.
,
Xu
,
D.
, and
Shafai
,
B.
,
1995
, “
On Sufficient Conditions for Stability Independent of Delay
,”
IEEE Trans. Autom. Control
,
40
,
1675
1680
.
13.
Kim
,
J. H.
,
2001
, “
Delay and its Time-Derivative Dependent Robust Stability of Time-Delayed Systems With Uncertainties
,”
IEEE Trans. Autom. Control
,
46
(
5
),
789
792
.
14.
Lee
,
J. H.
,
Kim
,
S. W.
, and
Kwon
,
W. H.
,
1994
, “
Memoryless H∞ Controllers for State Delayed Systems
,”
IEEE Trans. Autom. Control
,
39
,
159
162
.
15.
Choi
,
H. H.
, and
Chung
,
M. J.
,
1995
, “
Memoryless H∞ Controller Design for Linear Systems With Delayed State and Control
,”
Automatica
,
31
,
917
919
.
16.
Choi
,
H. H.
, and
Chung
,
M. J.
,
1997
, “
An LMI Approach to H∞ Controller Design for Linear Time Delay Systems
,”
Automatica
,
33
,
737
739
.
17.
Kim
,
J. H.
, and
Park
,
B. H.
,
1999
, “
H∞ State Feedback Control for Generalized Continuous/Discrete Time-Delay Systems
,”
Automatica
,
35
,
1443
1451
.
18.
Ge
,
J. H.
,
Frank
,
P. M.
, and
Lin
,
C. E.
,
1996
, “
Robust H∞ State Feedback Control for Linear Systems With State Delay and Parameter Uncertainty
,”
Automatica
,
32
(
6
),
1183
1185
.
19.
Yu
,
L.
,
Chu
,
J.
, and
Su
,
H. Y.
,
1996
, “
Robust Memoryless H∞ Controller Design for Linear Time-Delay Systems With Norm Bounded Time-Varying Uncertainty
,”
Automatica
,
32
(
12
),
1759
1762
.
20.
de Souza
,
C. E.
, and
Li
,
X.
,
1999
, “
Delay-Dependent Robust H∞ Control of Uncertain Linear State-Delayed Systems
,”
Automatica
,
35
,
1313
1321
.
21.
He
,
J. B.
,
Wang
,
Q. G.
, and
Lee
,
T. H.
,
1998
, “
H∞ Disturbance Attenuation for State Delayed Systems
,”
Syst. Control Lett.
,
33
,
105
114
.
22.
Doyle
,
J. C.
,
Glover
,
K.
,
Khargonekar
,
P. P.
, and
Francis
,
B. A.
,
1989
, “
State-Space Solutions to H2 and H∞ Control Problems
,”
IEEE Trans. Autom. Control
,
34
,
831
846
.
23.
Iwasaki
,
T.
, and
Skelton
,
R. E.
,
1994
, “
All Controllers for the H∞ Control Problem: LMI Existence Conditions and State Space Formulas
,”
Automatica
,
30
,
1307
1317
.
24.
Boyd, S., EI Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, “Linear Matrix Inequalities in System and Control Theory,” SIAM Studies in Applied Mathematics, Philadelphia, Vol. 15.
You do not currently have access to this content.