The experimental validation of an accurate dynamic model of flexible multi-body planar mechanisms is presented in this paper. The proposed mathematical model, which is valid for whatever planar mechanism with any number of flexible links, accounts for the geometric and inertial nonlinearities of the mechanism, and considers coupling effects among rigid-body and elastic motion as well. In order to experimentally validate the dynamic model, a flexible five-bar planar linkage actuated by two electric motors is employed as a test case. The experimentally measured deformations and accelerations of the flexible links are compared with the numerical results obtained by simulating the system dynamic behavior through the mathematical model. It turns out that the experimental results are in good agreement with the numerical ones, thus proving that the dynamical model proposed is very effective in the difficult task of accurately representing the dynamic behavior of flexible mechanisms.

1.
Lowen
,
G. G.
, and
Jandrasits
,
W. G.
,
1972
, “
Survey of Investigations into the Dynamic Behavior of Mechanism Containing Links with Distributed Mass and Elasticity
,”
Mech. Mach. Theory
,
7
, pp.
3
17
.
2.
Erdman
,
A. G.
, and
Sandor
,
G. N.
,
1972
, “
Kineto-Elastodynamics—A Review of the State-of-the-Art and Trends
,”
Mech. Mach. Theory
,
7
, pp.
19
33
.
3.
Lowen
,
G. G.
, and
Chassapis
,
C. C.
,
1986
, “
The Elastic Behavior of Linkages: An Update
,”
Mechanism and Machine Theory
,
21
, pp.
33
42
.
4.
Neubauer
,
A. H.
,
Cohen
,
R.
, and
Hall
,
A. S.
,
1966
, “
An Analytical Study of the Dynamics of an Elastic Linkage
,”
ASME J. Eng. Ind.
,
88
, No.
2
, pp.
311
317
.
5.
Badlani
,
M.
, and
Midha
,
A.
,
1982
, “
Member Initial Curvature Effects on the Elastic Slider-Crank Mechanism Response
,”
ASME J. Mech. Des.
,
104
, No.
1
, pp.
159
167
.
6.
Winfrey
,
R. C.
,
1972
, “
Dynamic Analysis of Elastic Link Mechanisms by Reduction of Coordinates
,”
ASME J. Eng. Ind.
,
93
, pp.
577
582
.
7.
Imam
,
I.
,
Sandor
,
G. N.
, and
Kramer
,
S. N.
,
1973
, “
Deflection and Stress Analysis in High-Speed Planar Mechanism with Elastic Links
,”
ASME J. Eng. Ind.
,
95
, pp.
541
548
.
8.
Bahgat
,
B. M.
, and
Willmert
,
K. D.
,
1976
, “
Finite Element Vibrational Analysis of Planar Mechanisms
,”
Mech. Mach. Theory
,
11
, pp.
47
71
.
9.
Turcic
,
D. A.
, and
Midha
,
A.
,
1984a
, “
Generalized Equations of Motion for the Dynamic Analysis of Elastic Mechanism Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
106
, pp.
242
248
.
10.
Turcic
,
D. A.
, and
Midha
,
A.
,
1984b
, “
Dynamic Analysis of Elastic Mechanism Systems. Part 1: Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
106
, pp.
249
254
.
11.
Nagarajan
,
S.
, and
Turcic
,
D. A.
,
1990a
, “
Lagrangian Formulation of the Equations of Motion for Elastic Mechanisms with Mutual Dependence between Rigid Body and Elastic Motions. Part I: Element Level Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
203
214
.
12.
Nagarajan
,
S.
, and
Turcic
,
D. A.
,
1990b
, “
Lagrangian Formulation of the Equations of Motion for Elastic Mechanisms with Mutual Dependence between Rigid Body and Elastic Motions. Part II: System Equations
,”
ASME J. Dyn. Syst., Meas., Control
,
112
, pp.
215
224
.
13.
Jonker
,
B.
,
1991
, “
Linearization of Dynamic Equations of Flexible Mechanisms—a Finite Element Approach
,”
Int. J. Numer. Methods Eng.
,
31
, pp.
1375
1392
.
14.
Hsiao
,
K. M.
, and
Yang
,
R. T.
,
1996
, “
Effect of Member Initial Curvature on a Flexible Mechanism Response
,”
J. Sound Vib.
,
190
, No.
2
, pp.
177
194
.
15.
Barbieri
,
E.
, and
O¨zgu¨ner
,
U¨.
,
1988
, “
Unconstrained and Constrained Mode Expansions for a Flexible Slewing Link
,”
ASME J. Dyn. Syst., Meas., Control
,
110
, pp.
416
421
.
16.
Giovagnoni
,
M.
,
1993
, “
Linear Decoupled Models for a Slewing Beam Undergoing Large Rotations
,”
J. Sound Vib.
,
164
, No.
3
, pp.
485
501
.
17.
Yang
,
K. H.
, and
Park
,
Y. S.
,
1996
, “
Dynamic Stability Analysis of a Closed-Loop Flexible Link Mechanism
,”
Mech. Mach. Theory
,
31
, No.
5
, pp.
545
560
.
18.
Yang
,
K. H.
, and
Park
,
Y. S.
,
1998
, “
Dynamic Stability Analysis of a Flexible Four-Bar Mechanism and its Experimental Investigation
,”
Mech. Mach. Theory
,
33
, No.
3
, pp.
307
320
.
19.
Xianmin
,
Z.
,
Jike
,
L.
, and
Yunwen
,
S.
,
1998
, “
A High Efficient Frequency Analysis Method for Closed Flexible Mechanism System
,”
Mech. Mach. Theory
,
33
, No.
8
, pp.
1117
1125
.
20.
Hu
,
F. L.
, and
Ulsoy
,
A. G.
,
1994
, “
Dynamic Modeling of Constrained Flexible Robot Arms for Controller Design
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
56
61
.
21.
Siciliano
,
B.
,
Prasad
,
J. V. R.
, and
Calise
,
A. J.
,
1992
, “
Output Feedback Two-Time Scale Control of Multilink Flexible Arms
,”
ASME J. Dyn. Syst., Meas., Control
,
114
, pp.
70
77
.
22.
Khorrami
,
F.
, and
Zheng
,
S.
,
1992
, “
An Inner/Outer Loop Controller for Rigid-Flexible Manipulators
,”
ASME J. Dyn. Syst., Meas., Control
,
114
, pp.
580
585
.
23.
Yigit
,
A. S.
,
1994
, “
On the Stability of PD Control for a Two-Link Rigid-Flexible Manipulator
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
208
213
.
24.
Tadikonda
,
S. S. K.
,
Mordfin
,
T. G.
, and
Hu
,
T. G.
,
1995
, “
Assumed Modes Method and Articulated Flexible Multibody Dynamics
,”
J. Guid. Control Dyn.
,
18
, No.
3
, pp.
404
410
.
25.
Mordfin
,
T. G.
, and
Tadikonda
,
S. S. K.
,
2000
, “
Truth Models for Articulating Flexible Multibody Dynamic Systems
,”
J. Guid. Control Dyn.
,
23
, No.
5
, pp.
805
811
.
26.
Liou
,
F. W.
, and
Peng
,
K. C.
,
1993
, “
Experimental Frequency Response Analysis of Flexible Mechanisms
,”
Mech. Mach. Theory
,
28
, No.
1
, pp.
73
81
.
27.
Turcic
,
D. A.
,
Midha
,
A.
, and
Bosnik
,
J. R.
,
1984
, “
Dynamic Analysis of Elastic Mechanism Systems. Part II: Experimental Results
,”
ASME J. Dyn. Syst., Meas., Control
,
106
, pp.
255
260
.
28.
Giovagnoni
,
M.
,
1994
, “
A Numerical and Experimental Analysis of a Chain of Flexible Bodies
,”
ASME J. Dyn. Syst., Meas., Control
,
116
, pp.
73
80
.
29.
Chang
,
L. W.
, and
Hamilton
,
J. F.
,
1991
, “
The Kinematics of Robotic Manipulators with Flexible Links Using an Equivalent Rigid Link System (ERLS) Model
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, pp.
48
53
.
You do not currently have access to this content.