This paper reexamines the stability of uncertain closed-loop systems resulting from the nonsequential (NS) MIMO QFT design methodology. By combining the effect of satisfying both the robust stability and robust performance specifications in a NS MIMO QFT design, a proof for the stability of the uncertain closed-loop system is derived. The stability theorem proves that, subject to the satisfaction of a critical necessary and sufficient condition, the original NS MIMO QFT design methodology will provide a robustly stable closed-loop system. This necessary and sufficient condition provides a useful existence test for a successful NS MIMO QFT design. The results expose the salient features of the NS MIMO QFT design methodology. Two 2×2 MIMO design examples are presented to illustrate the key features of the stability theorem.

1.
Horowitz
,
I.
, 1979, “
Quantitative Synthesis of Uncertain Multi Input-Output Feedback Systems
,”
Int. J. Control
0020-7179,
30
(
1
), pp.
81
106
.
2.
Houpis
,
C. H.
, and
Rasmussen
,
S. J.
, 1999,
Quantitative Feedback Theory: Fundamentals and Applications
,
Marcel Dekker
, New York.
3.
Yaniv
,
O.
, and
Horowitz
,
I.
, 1986, “
A Quantitative Design Method for MIMO Linear Feedback Systems Having Uncertain Plants
,”
Int. J. Control
0020-7179,
43
, pp.
401
421
.
4.
Yaniv
,
O.
, 1999,
Quantitative Feedback Design of Linear and Nonlinear Control Systems
,
Kluwer
, Norwell, MA.
5.
Horowitz
,
I.
, 1991, “
Survey of Quantitative Feedback Theory (QFT)
,”
Int. J. Control
0020-7179,
53
, pp.
255
291
.
6.
Horowitz
,
I.
, 1993,
Quantitative Feedback Design Theory (QFT)
,
QFT Publications
, Boulder, CO.
7.
Zhao
,
Y.
, and
Jayasuriya
,
S.
, 1996, “
Robust Stability of Closed-Loop Systems Resulting from Nonsequential MIMO-QFT Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
, pp.
753
756
.
8.
Jayasuriya
,
S.
, and
Zhao
,
Y.
, 1994, “
Robust Stability of Plants with Mixed Uncertainties and the Quantitative Feedback Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
116
, pp.
10
16
.
9.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1996,
Robust and Optimal Control
,
Prentice Hall
, Englewood Cliffs, NJ.
10.
Rheinboldt
,
W. C.
, and
Vandergraft
,
J. S.
, 1973, “
A Simple Approach to the Perron-Frobenius Theory for Positive Operators and General Partially-Ordered Finite-Dimensional Linear Spaces
,”
Math. Comput.
0025-5718,
27
(
121
), pp.
139
145
.
11.
Horn
,
R. A.
, and
Johnson
,
C. R.
, 1999,
Matrix Analysis
,
Cambridge University Press
, New York.
12.
Holt
,
B. R.
, and
Morari
,
N.
, 1985, “
Design of Resilient Processing Plants—VI: The Effect of Right-Half-Plane Zeros on Dynamic Resilience
,”
Chem. Eng. Sci.
0009-2509,
40
, pp.
59
74
.
13.
Davison
,
E. J.
, and
Wang
,
S. H.
, 1973, “
A Characterization of Decentralized Fixed Modes in Terms of Transmission Zeros
,”
IEEE Trans. Autom. Control
0018-9286,
AC-30
, pp.
81
82
.
14.
Doyle
,
J. C.
, 1986, “
Quantitative Feedback Theory (QFT) and Robust Control
,”
Proc. of 1986 American Control Conference
, Seattle, pp.
1691
1698
.
15.
Nwokah
,
O. D. I.
, and
Thompson
,
D. F.
, 1989, “
Algebraic and Topological Aspects of Quantitative Feedback Theory
,”
Int. J. Control
0020-7179,
50
(
4
), pp.
1057
1069
.
16.
Yaniv
,
O.
, 1992, “
Synthesis of Uncertain MIMO Feedback Systems for Gain and Phase Margins at Different Channel Breaking Points
,”
Automatica
0005-1098,
28
(
5
), pp.
1017
1020
.
You do not currently have access to this content.