A systematic method for analyzing electrohydraulic servosystems with inherent friction and transport delay is proposed. The analysis concept is well organized and described. Critical boundary equations are proposed to solve for the stability region boundaries. Three divided regions are found and examined, which are stable, unstable, and oscillatory regions. System performance relating to various controller gains and transport delay is discussed using simulation.

1.
Karnopp
,
D.
, 1985, “
Computer simulation of stick-slip friction in mechanical dynamic systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
107
, pp.
100
103
.
2.
Haessig
,
D. A.
and
Friedland
,
B.
, 1991, “
On the modeling and simulation of friction
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
, pp.
100
103
.
3.
Olsson
,
H.
and
Åström
,
K. J.
, 2001, “
Friction generated limit cycles
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
, pp.
629
636
.
4.
Hensen
,
R. H. A.
and
van de Molengraft
,
M. J. G.
, 2002, “
Friction induced hunting limit cycles: An event mapping approach
,”
American Control Conference
, AK: Anchorage,
3
, pp.
2267
2272
.
5.
Cox
,
C. S.
and
French
,
I. G.
, 1986, “
Limit cycles prediction conditions for a class of hydraulic control system
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
108
, pp.
17
23
.
6.
Chin
,
J. H.
and
Fu
,
W. C.
, 1994, “
Analysis of an electrohydraulic servo system subject to stribeck-type friction
,”
Int. J. Syst. Sci.
0020-7721,
25
, pp.
1015
1037
.
7.
Armstrong-Helouvry
,
B.
, and
Amin
,
B.
, 1994, “
PID control in the presence of static friction: exact and describing function analysis
,”
American Control Conference
,
Baltimore
, Maryland, Vol.
1
, pp.
597
601
.
8.
Mougenet
,
F.
and
Hayward
,
V.
, 1995, “
Limit cycle characterization, existence and quenching in the control of a high performance hydraulic actuator
,”
IEEE International Conference on Robotic Automation
,
Detroit
, Michigan, Vol.
3
, pp.
2218
2223
.
9.
Agrawal
,
A. K.
,
Yang
,
J. N.
, and
Kosaka
,
H.
, 1999, “
Effect of actuator dynamics and fixed time-delay on the stability of activity controlled structures
,”
American Control Conference
,
San Diego
, California, Vol.
1
, pp.
510
514
.
10.
Chang
,
Y. C.
,
Liu
,
C. C.
, and
Han
,
K. W.
, 1998, “
Analysis of limit cycles for a low flying vehicle with three nonlinearities
,”
Actual Problems of Aviation and Aerospace Systems: Processes, Models, Experiment
,
6
, pp.
38
50
.
11.
Liaw
,
C. M.
,
Pan
,
C. T.
, and
Han
,
K. W.
, 1987, “
Limit cycle analysis of power systems with governor deadband nonlinearity
,”
J. Chin. Inst. Eng.
0253-3839,
10
, pp.
263
271
.
12.
Slotine
,
J.-J. E.
and
Li
,
W.
, 1991,
Applied Nonlinear Control
Prentice–Hall
, New Jersey.
13.
Pillai
,
V. K.
and
Nelson
,
H. D.
, 1988, “
A new algorithm for limit cycle analysis of nonlinear control systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
, pp.
272
277
.
14.
Merritt
,
H. E.
, 1967,
Hydraulic Control Systems
Wiley
, New York.
This content is only available via PDF.
You do not currently have access to this content.