In this paper, the adaptive H control problem based on the neural network technique is studied for a class of strict-feedback nonlinear systems with mismatching nonlinear uncertainties that may not be linearly parametrized. By combining the backstepping technique with H control design, an adaptive neural controller is synthesized to attenuate the effect of approximation errors and guarantee an H tracking performance for the closed-loop system. In this work, the structural property of the system is utilized to synthesize the controller such that the singularity problem of the controller usually encountered in feedback linearization design is avoided. A numerical simulation illustrating the H control performance of the closed-loop system is provided.

1.
Kanellakopoulos
,
I.
,
Kokotovic
,
P. V.
, and
Morse
,
A. S.
, 1991, “
Systematic Design of Adaptive Controller for Feedback Linearizable System
,”
IEEE Trans. Autom. Control
0018-9286
36
, pp.
1241
1253
.
2.
Krstic
,
M.
, and
Kokotovic
,
P. V.
, 1995, “
Adaptive Nonlinear Design with Controller-Identifier Separation and Swapping
,”
IEEE Trans. Autom. Control
0018-9286
40
, pp.
426
440
.
3.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley
, New York.
4.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
, 1992, “
Adaptive Nonlinear Control Without Overparameterization
,”
Syst. Control Lett.
0167-6911
19
, pp.
177
185
.
5.
Seto
,
D.
,
Annaswamy
,
A. M.
, and
Baillieul
,
J.
, 1994, “
Adaptive Control of Nonlinear Systems with a Triangular Structure
,”
IEEE Trans. Autom. Control
0018-9286
39
, pp.
1411
1428
.
6.
Polycarpou
,
M. M.
, and
Ioannou
,
P. A.
, 1997, “
A Robust Adaptive Nonlinear Control Design
,”
Automatica
0005-1098
32
, pp.
423
427
.
7.
Yao
,
B.
, and
Tomizuka
,
M.
, 1997, “
Adaptive Robust Control of SISO Nonlinear Systems in a Semi-Strict Feedback Form
,”
Automatica
0005-1098
33
, pp.
893
900
.
8.
Funahashi
,
K.
, 1989, “
On the Approximate Realization of Continuous Mapping by Neural Networks
,”
Neural Networks
0893-6080
2
, pp.
183
192
.
9.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
, 1989, “
Multilayer Feedforward Networks are Universal Approximators
,”
Neural Networks
0893-6080
2
, pp.
359
366
.
10.
Park
,
J.
, and
Sandberg
,
I. W.
, 1991, “
Universal Approximation Using Radial-Basis-Function Networks
,”
Neural Comput.
0899-7667
19
, pp.
246
257
.
11.
Fabri
S.
, and
Kadirkamanathan
,
V.
, 1996, “
Dynamic Structure Neural Networks for Stable Adaptive Control of Nonlinear Systems
,”
Neural Networks
0893-6080
7
,
1151
1167
.
12.
Sanner
,
R. M.
, and
Slotine
,
J. E.
, 1992, “
Gaussian Networks for Direct Adaptive Control
,”
Neural Networks
0893-6080
3
, pp.
837
863
.
13.
Yesidirek
,
A.
, and
Lewis
,
F. L.
, 1995, “
Feedback Linearization Using Neural Networks
,”
Automatica
0005-1098
31
, pp.
1659
1664
.
14.
Knohl
,
T.
, and
Unbehauen
,
H.
, 2000, “
ANNNAC-extension of Adaptive Backstepping Algorithm with Artificial Neural Networks
,”
IEE Proc.: Control Theory Appl.
1350-2379
147
, pp.
177
-
183
.
15.
Kwan
,
C. M.
, and
Lewis
,
F. L.
, 2000, “
Robust Backtepping Control of Induction Motors Using Neural Networks
,”
IEEE Trans. Neural Netw.
1045-9227
11
, pp.
1778
1187
.
16.
Polycarpus
,
M. M.
, and
Mears
,
M. J.
, 1998, “
Stable Adaptive Tracking of Uncertain Systems Using Nonlinearly Parametrized On-Line Approximators
,”
Int. J. Control
0020-7179
70
, pp.
363
384
.
17.
Polycarpus
,
M. M.
, 1996, “
Stable Adaptive Neural Control for Nonliear Systems
,”
IEEE Trans. Autom. Control
0018-9286
41
, pp.
447
451
.
18.
Wai
,
R.-J.
,
Lin
,
F.-J.
, and
Hsu
,
S.-P.
, 2001, “
Intelligent Backtepping Control for Linear Induction Motor Drive
,”
IEE Proc.: Control Theory Appl.
1350-2379
148
, pp.
193
202
.
19.
Hwang
,
M.-C.
,
Hu
,
X.
, and
Shrivastava
,
Y.
, 1998, “
Adaptive H∞ Neural Network Tracking Controller for Electrically Driven Manipulators
,”
IEE Proc.: Control Theory Appl.
1350-2379
145
, pp.
594
602
.
20.
Lin
,
C.-L.
, and
Lin
,
T.-L.
, 2001, “
An H∞ Design Approach for Neural Net-Based Control Schemes
,”
IEEE Trans. Autom. Control
0018-9286
46
, pp.
1599
1605
.
21.
Lin
,
C.-L.
, and
Lin
,
T.-Y.
, 2002, “
Approach to Adaptive Neural Net-Based H∞ Control Design
,”
IEE Proc.: Control Theory Appl.
1350-2379
149
, pp.
331
342
.
22.
Chen
,
B. S.
,
Lee
,
C. H.
, and
Chang
,
Y. C.
, 1996, “
H-Inifity Tracking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach
,”
IEEE Trans. Fuzzy Syst.
1063-6706
4
, pp.
32
43
.
23.
Chen
,
B. S.
,
Tseng
,
C. H.
, and
Uang
,
H. J.
, 1999, “
Robustness Design of Nonlinear Dynamic Systems Via Fuzzy Linear Control
,”
IEEE Trans. Fuzzy Syst.
1063-6706
7
, pp.
571
585
.
24.
Wang
,
W.-Y.
,
Chan
,
M.-L.
,
Lee
,
T.-T.
, and
Liu
,
C.-H.
, 2000, “
Adaptive Fuzzy Control for Strict-Feedback Canonical Nonlinear Systems with H∞ Tracking Performance
,”
IEEE Trans. Syst. Man Cybern.
0018-9472
30
, pp.
878
885
.
25.
Wang
,
W.-Y.
,
Chan
,
M.-L.
,
Hsu
,
C.-C. J.
, and
Lee
,
T.-T.
, 2002, “
H∞ Tracking-Based Sliding Mode Control for Uncertain Nonlinear Systems Via an Adaptive Fuzzy-Neural Approach
,”
IEEE Trans. Syst. Man Cybern.
0018-9472
32
, pp.
483
492
.
26.
Fu
,
L. C.
, 1996, “
Neural Network Approach to Variable Structure Based Adaptive Tracking of SISO Systems
,”
IEEE Workshop on Variable Structure Systems
, Roppongi, Tokyo, Japan, pp.
148
153
.
27.
Kwan
,
C. M.
,
Lewis
,
F. L.
, and
Kim
,
Y. H.
, 1995, “
Robust Neural Network Control of Flexible-Joint Robots
,”
Proc. Conf. Decision & Control
,
New Orleans
, New Orleans, LA, pp.
1296
1301
.
28.
Kwan
,
C.
,
Dawson
,
D. M.
, and
Lewis
,
F. L.
, 2001, “
Robust Adaptive Control of Robots Using Neural Network: Global Stability
,”
Asian J. Control
,
3
, pp.
111
121
.
You do not currently have access to this content.