Force-feedback mechanisms have been designed to simplify and enhance the human-vehicle interface. The increase in secondary controls within vehicle cockpits has created a desire for a simpler, more efficient human-vehicle interface. By consolidating various controls into a single, haptic feedback control device, information can be transmitted to the operator, without requiring the driver’s visual attention. In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based resistive actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress electroactively. Using the electrically controlled rheological properties of ERFs, we developed resistive-actuators for haptic devices that can resist human operator forces in a controlled and tunable fashion. In this study, the ERF resistive-actuator analytical model is derived and experimentally verified and accurate closed loop torque control is experimentally achieved using a non-linear proportional integral controller with a feedforward loop.

2.
Kuenzner
,
H.
et al.
, 1999, “
Operating Device for Menu Controlled Functions of a Vehicle
,” US005,956,016.
3.
Levin
,
M.
et al.
, 2000, “
Control Knob with Multiple Degrees of Freedom and Force Feedback
,” US006,154,201.
4.
Mannesmann VDO AG Information Systems
, “
Programmable Rotating Actuator with Haptic Feedback
,” product description, www.vdo.comwww.vdo.com.
5.
Badescu
,
M.
,
Wampler
,
C.
, and
Mavroidis
,
C.
, 2002, “
Rotary Haptic Knob for Vehicular Instrument Controls
”,
Proceedings of the Tenth Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, March 24, 25, 2002,
Marriott Hotel
,
Orlando, FL
.
6.
Ackermann
,
B.
, and
Elferich
,
R.
, 2002, “
Application of Magnetorheological Fluids in Programmable Haptic Knobs
,”
Actuator 2000, Seventh International Conference on New Actuators
, June 19–21, 2002,
Bremen
,
Germany
.
7.
Phule
,
P.
, and
Ginder
,
J.
, 1998, “
The Materials Science of Field-Responsive Fluids
,”
MRS Bull.
0883-7694,
23
(
8
), pp.
19
21
.
8.
Mavroidis
,
C.
,
Bar-Cohen
,
Y.
, and
Bouzit
,
M.
, 2001, “
Chapter 19: Haptic Interfaces Using Electrorheological Fluids
,” invited chapter in
Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potentials and Challenges
,
Y.
Bar-Cohen
, ed.,
SPIE Optical Engineering Press
,
Bellingham, WA
, pp.
567
594
.
9.
Kenaley
,
G. L.
, and
Cutkosky
,
M. R.
, 1989, “
Electrorheological Fluid-Based Robotic Fingers With Tactile Sensing
,”
Proceedings of the 1989 IEEE International Conference on Robotics and Automation
,
Scottsdale, AZ
, pp.
132
136
.
10.
Wood
,
D.
, 1998, “
Editorial: Tactile Displays: Present and Future
,”
Displays-Technology and Applications
,
18
(
3
), pp.
125
128
.
11.
Monkman
,
G. J.
, 1992, “
Electrorheological Tactile Display
,”
Presence
,
MIT Press
, Vol.
1
, No. 2.
12.
Taylor
,
P. M.
,
Hosseini-Sianaki
,
A.
, and
Varley
,
C. J.
, 1996, “
Surface Feedback for Virtual Environment Systems Using Electrorheological Fluids
,”
Int. J. Mod. Phys. B
0217-9792,
10
(
23–24
), pp.
3011
3018
.
13.
Sakaguchi
,
M.
, and
Furusho
,
J.
, 1998, “
Force Display System Using Particle-Type Electrorheological Fluids
,”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation
,
Leuven
,
Belgium
, May 1998, pp.
2586
2590
.
14.
Böse
,
H.
,
Berkemeier
,
J.
, and
Trendler
,
A.
, 2000, “
Haptic System Based on Electrorheological Fluid
,”
Proceedings of the ACTUATOR 2000 Conference
, 19–21 June 2000,
Bremen
,
Germany
.
15.
Choi
,
S. B.
, 1999, “
Control of ER Devices
,”
Int. J. Mod. Phys. B
0217-9792,
13
(
14–16
), pp.
2160
2167
.
16.
Powell
,
J. A.
, 1995, “
ERF as a Means of Vibration Suppression
,”
Proceedings of the International Conference on Vibration and Noise
, April 25–27, 1995, pp.
1
8
.
17.
Rettig
,
U.
, and
Von Stryk
,
O.
, 2001,
Numerical Optimal Control Strategies for Semi-Active Vehicle Suspension With ERF Dampers
,” in
Fast Solution of Discretized Optimization Problems
,
K.-H.
Hoffmann
,
R. H. W.
Hoppe
,
V.
Schulz
, eds., ISNM Vol.
138
,
Birkhauser, Verlag
,
Basel
, 2001, pp.
221
241
.
18.
Gavin
,
H. P.
, 2001, “
Control of Seismically-Excited Vibration Using ER Materials and Lyapunov Methods
,”
IEEE Trans. Autom. Control
0018-9286,
9
(
1
), pp.
27
36
.
19.
Nakano
,
M.
,
Minagawa
,
S.
, and
Hagino
,
K.
, 1999, “
PMW Flow Rate Control of ER Valve and its Application to ER Actuator Control
,”
Int. J. Mod. Phys. B
0217-9792,
13
(
14–16
), pp.
2168
2175
.
20.
Akella
,
P.
, and
Cutkosky
,
M.
, 1995, “
Contact Transition Control with Semiactive Fingertips
,”
IEEE Trans. Rob. Autom.
1042-296X,
11
(
6
), pp.
859
867
.
21.
Fisch
,
A.
,
Mavroidis
,
C.
,
Melli-Huber
,
J.
, and
Bar-Cohen
,
Y.
, 2003, “
Chapter 4: Haptic Devices for Virtual Reality, Telepresence, and Human-Assistive Robotics
,” invited chapter in
Biologically-Inspired Intelligent Robots
,
Y.
Bar-Cohen
and
C.
Breazeal
, eds.,
SPIE Press
,
Bellingham, WA
, pp.
73
101
.
22.
Mavroidis
,
C.
,
Pfeiffer
,
C.
,
Celestino
,
J.
, and
Bar-Cohen
,
Y.
, 2000, “
Design and Modeling of an Electro-Rheological Fluid Based Haptic Interface
,”
Proceedings of the 2000 ASME Mechanisms and Robotics Conference
, Baltimore, MD, September 10–13, 2000. Paper DETC2000/MECH-14121.
23.
Melli-Huber
,
J.
,
Weinberg
,
B.
,
Fisch
,
A.
,
Nikitczuk
,
J.
,
Mavroidis
,
C.
,
Wampler
,
C.
, 2003, “
Electro-Rheological Fluidic Actuators for Haptic Vehicular Instrument Controls
,”
Proceedings of the Eleventh Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
, March 22 and 23, 2003,
Los Angeles, CA
, pp.
262
267
.
24.
Block
,
H.
, and
Kelly
,
J. P.
, 1988, “
Electro-Rheology
,”
J. Phys. D
0022-3727,
21
, pp.
1661
1677
.
25.
Conrad
,
H.
, 1998, “
Properties and Design of Electrorheological Suspensions
,”
MRS Bull.
0883-7694,
23
(
8
), pp.
35
42
.
26.
Gast
,
A. P.
, and
Zukoski
,
C. F.
, 1989, “
Electrorheological Suspensions as Colloidal Suspensions
,”
Adv. Colloid Interface Sci.
0001-8686,
30
, pp.
153
202
.
27.
Weiss
,
K. D.
,
Carlson
,
D. J.
, and
Coulter
,
J. P.
, “
Material Aspects of Electrorheological Systems
,” in
Advances in Intelligent Material Systems and Structures-Volume 2: Advances Electrorheological Fluids
,
Kohudic
,
M. A.
, ed.,
Technomic Publishing Company
,
Lancaster, PA
.
28.
Winslow
,
W. M.
, 1949, “
Induced Fibrillation of Suspensions
,”
J. Appl. Phys.
0021-8979,
20
, pp.
1137
1140
.
29.
Goodwin
,
J. W.
,
Markham
,
G. M.
, and
Vincent
,
B.
, 1997, “
Studies on Model Electro Rheological Fluids
,”
Adv. Organomet. Chem.
0065-3055,
101
(
11
), pp.
1961
1967
.
30.
Rajagopal
,
K. R.
, and
Ruzicka
,
M.
, 1996, “
On the Modelling of Electrorheological Materials
,”
Mech. Res. Commun.
0093-6413,
23
(
4
), pp.
401
407
.
31.
Bonnecaze
,
R. T.
, and
Brady
,
J. F.
, 1992, “
Yield Stresses in Electrorheological Fluids
,”
J. Rheol.
0148-6055,
36
,
73
115
.
32.
Wang
,
X.
, and
Gordaninejad
,
F.
, 1999, “
Flow Analysis of Field-Controllable, Electrorheological and Magnetorheological Fluids Using Herschel-Bulkley Model
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
10
, pp.
601
608
.
33.
Smart Technology Ltd
, “
Technical Information Sheet—Electro-Rheological Fluid LID 3354S
,” 2001.
You do not currently have access to this content.