In this paper we propose a flatness-based nonlinear sampled-data control approach for the trajectory tracking of nonlinear differentially flat systems that can be expressed in cascade form. The nonlinear sampled-data control method relies on the flatness property for the generation of appropriate trajectories, with the design of one-step predictive control laws, and on controller discretization by means of an averaging-like method. In the paper we demonstrate that the causality problem that might arise in the implementation is avoided by using an estimator based on numerical integration techniques of sufficiently high order. Stability-like properties are proved. Numerical simulations show that the proposed sampled-data control law offers the best closed-loop performance when compared with nonlinear direct digital design for the trajectory tracking of a rotorcraft-like UAV modeled as the unicycle. The synthesis of the nonlinear sampled-data control law takes advantage of the feedback linearizability property of the unicycle model. Furthermore, the proposed nonlinear sampled-data control does not rely on approximated discretization techniques and is computed from exponentially convergent steering trajectories that result from the stabilization of the linearized unicycle model.

1.
Aström
,
K. J.
, and
Wittenmark
,
B.
, 1990,
Computer-Controlled Systems—Theory and Design
, 2nd ed.
Prentice-Hall
,
Englewood Cliffs, NJ
.
2.
Chen
,
T.
, and
Francis
,
B.
, 1995,
Optimal Sampled-Data Control Systems
,
Springer-Verlag
,
London, England
.
3.
Yeh
,
P. C.
, and
Kokotovic
,
P. V.
, 1995, “
Adaptive Control of a Class of Nonlinear Discrete-Time Systems
,”
Int. J. Control
0020-7179,
62
, pp.
303
324
.
4.
Zhang
,
Y.
,
Wen
,
C.
, and
Soh
,
Y. C.
, 2000, “
Discrete-Time Robust Backstepping Adaptive Control for Nonlinear Time-Varying Systems
,”
IEEE Trans. Autom. Control
0018-9286,
45
, pp.
1749
1755
.
5.
Dabroom
,
A. M.
, and
Khalil
,
H. K.
, 2001, “
Output Feedback Sampled-Data Control of Nonlinear Systems Using High Gain Observers
,”
IEEE Trans. Autom. Control
0018-9286,
46
, pp.
1712
1725
.
6.
Nesic
,
D.
,
Teel
,
A. R.
, and
Kokotovic
,
P. V.
, 1999, “
Sufficient Conditions for Stabilization of Sampled-data Nonlinear: Systems Via Discrete-Time Approximations
,”
Syst. Control Lett.
0167-6911,
38
, pp.
259
270
.
7.
Nesic
,
D.
, and
Angeli
,
D.
, 2002, “
Integral Version of ISS for Sampled-Data Nonlinear Systems Via Their Approximate Discrete-time Models
,”
IEEE Trans. Autom. Control
0018-9286,
47
, pp.
2033
2037
.
8.
Nesic
,
D.
, and
Teel
,
A. R.
, 2004, “
A Framework for Stabilization of Nonlinear Sampled-Data Systems Based on Their Approximate Discrete-Time Models
,”
IEEE Trans. Autom. Control
0018-9286,
49
(
7
), pp.
1103
1122
.
9.
Martin
,
P.
, and
Rouchon
,
P.
, 1996, “
Flatness and Sampling Control of Induction Motors
,” in
Proceedings of the 13th IFAC Triennial World Congress
, pp.
389
394
.
10.
Fliess
,
M.
,
Lévine
,
J.
,
Martin
,
Ph.
, and
Rouchon
,
P.
, 1995, “
Flatness and Defect of Nonlinear Systems: Introductory Theory and Application
,”
Int. J. Control
0020-7179,
61
, pp.
1327
1361
.
11.
Murray
,
R. M.
, 1997, “
Nonlinear Control of Mechanical Systems: A Lagrangian Perspective
,”
Annu. Rev. Control
1367-5788,
21
, pp.
31
45
.
12.
Van Nieuwstadt
,
M. J.
, and
Murray
,
R. M.
, 1998, “
Rapid Hover to Forward Flight Transitions for a Thrust Vectored Aircraft
,”
J. Guid. Control Dyn.
0731-5090,
21
, pp.
93
100
.
13.
Rabbath
,
C. A.
,
Hori
,
N
, and
Léchevin
,
N
, 2004, “
Convergence of Sampled-Data Models in Digital Redesign
,”
IEEE Trans. Autom. Control
0018-9286,
49
, pp.
850
855
.
14.
Singh
,
L.
, and
Fuller
,
J.
, 2001, “
Trajectory Generation for a UAV in Urbain Terrain, Using Nonlinear MPC
,” in
Proceedings of the American Control Conference
, pp.
2301
2308
.
15.
Khargonekar
,
P.
,
Poolla
,
K.
, and
Tannenbaum
,
A.
, 1985, “
Robust Control of Linear Time-invariant Plants Using Periodic Compensation
,”
IEEE Trans. Autom. Control
0018-9286,
30
, pp.
1088
1096
.
16.
Yamamoto
,
Y.
, 1990, “
New Approach to Sampled-Data Control Systems—A Function Space Method
,”
Proc. 29th Conf. Decision and Control
, pp.
1882
1887
.
17.
Bamieh
,
B.
,
Pearson
,
J. B.
,
Francis
,
B. A.
, and
Tannenbaum
,
A.
, 1991, “
A Lifting Technique For Linear Periodic Systems With Applications to Sampled-Data Control
,”
Syst. Control Lett.
0167-6911,
17
, pp.
79
88
.
18.
Fliess
,
M.
,
Lévine
,
J.
,
Martin
,
P.
, and
Rouchon
,
P.
, 1999, “
A Lie-Bäcklund Approach to Equivalence and Flatness of Nonlinear Systems
,”
IEEE Trans. Autom. Control
0018-9286,
44
, pp.
922
937
.
19.
Hartley
,
T. T.
,
Beale
,
G. O.
, and
Chicatelli
,
S. P.
, 1994,
Digital Simulation of Dynamic Systems—A Control Theory Approach
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Khalil
,
H. K.
, 2002,
Nonlinear Systems
, 3rd ed.,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
651
652
.
21.
Nesic
,
D.
,
Teel
,
A. R.
, and
Sontag
,
E. D.
, 1999, “
Formulas Relating KL Stabililty Estimates of Discrete-Time and Sampled-Data Nonlinear Systems
,”
Syst. Control Lett.
0167-6911,
38
, pp.
49
60
.
You do not currently have access to this content.