We consider the problems of kinematic and dynamic constraints, with actuator saturation and wheel slippage avoidance, for motion planning of a holonomic three-wheeled omni-directional robot. That is, the motion planner must not demand more velocity and acceleration at each time instant than the robot can provide. A new coupled non-linear dynamics model is derived. The novel concepts of Velocity and Acceleration Cones are proposed for determining the kinematic and dynamic constraints. The Velocity Cone is based on kinematics; we propose two Acceleration Cones, one for avoiding actuator saturation and the other for avoiding wheel slippage. The wheel slippage Acceleration Cone was found to dominate. In practical motion, all commanded velocities and accelerations from the motion planner must lie within these cones for successful motion. Case studies, simulations, and experimental validations are presented for our dynamic model and controller, plus the Velocity and Acceleration Cones.

1.
Pin
,
F. G.
, and
Killough
,
S. M.
, 1994, “
A New Family of Omni-Directional and Holonomic Wheeled Platforms for Mobile Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
10
(
4
), pp.
480
489
.
2.
Watanabe
,
K.
,
Yamamoto
,
S.
,
Tzafestas
,
S. G.
,
Tang
,
J.
, and
Fukuda
,
T.
, 1998, “
Feedback Control of an Omnidirectional Autonomous Platform for Mobile Service Robots
,”
J. Intell. Robotic Syst.
0921-0296,
22
, pp.
315
330
.
3.
Williams
II,
R. L.
,
Carter
,
B.
,
Gallina
,
P.
, and
Rosati
,
G.
, 2002, “
Dynamic Model With Slip for Wheeled Omnidirectional Robots
,”
IEEE Trans. Rob. Autom.
1042-296X,
18
(
3
), pp.
285
293
.
4.
Kalmar-Nagy
,
T.
,
Ganguly
,
P.
, and
D’Andrea
,
R.
, 2001, “
Real Time, Near-Optimal Trajectory Control of an Omni-Directional Vehicle
,”
Proceedings of ASME IMECE '01, Symposium on Modeling, Control and Diagnostics of Large-Scale Systems
, New York, Nov. 11–16, Paper No. DSC-24583.
5.
Borenstein
,
J.
, and
Koren
,
Y.
, 1987, “
Motion Control Analysis of a Mobile Robot
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
109
(
2
), pp.
73
79
.
6.
Hong
,
D.
,
Velinsky
,
S. A.
, and
Feng
,
X.
, 1999, “
Verification of a Wheeled Mobile Robot Dynamic Model and Control Ramifications
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
1
), pp.
58
63
.
7.
Astolfi
,
A.
, 1999, “
Exponential Stabilization of a Wheeled Mobile Robot via Discontinuous Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
1
), pp.
121
126
.
8.
Dixon
,
W. E.
,
Dawson
,
D. M.
, and
Zergeroglu
,
E.
, 2000, “
Tracking and Regulation Control of a Mobile Robot System With Kinematic Disturbances: A Variable Structure-Like Approach
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
4
), pp.
616
623
.
9.
Mukherjee
,
R.
,
Minor
,
M. A.
, and
Pukrushpan
,
J. T.
, 2002, “
Motion Planning for a Spherical Mobile Robot: Revisiting the Classical Ball-Plate Problem
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
4
), pp.
502
511
.
10.
Chakraborty
,
N.
, and
Ghosal
,
A.
, 2005, “
Dynamic Modeling and Simulation of Wheeled Mobile Robot for Traversing Uneven Terrain Without Slip
,”
ASME J. Mech. Des.
1050-0472,
127
(
5
), pp.
901
909
.
11.
Betourne
,
A.
, and
Campion
,
G.
, 1996, “
Dynamic Modeling and Control Design of a Class of Omni-Directional Mobile Robots
,”
IEEE Conference on Robotics & Automation
, Vol.
3
, pp.
2810
2815
.
12.
Fujisawa
,
S.
,
Yamamoto
,
T.
,
Suita
,
Y.
,
Ryuman
,
N.
,
Sogo
,
H.
, and
Yoshida
,
T.
, 2001, “
Development of Path Tracking Control for Omni-Directional Mobile Robot Using Visual Servo System
,”
27th Annual IEEE Industrial Electronics Society Conference (IECON '01)
, Denver, CO, November 29–December 2, Vol.
3
, pp.
2166
2170
.
13.
Smid
,
G. E.
,
Cheok
,
K. C.
,
Karlson
,
R. E.
, and
Hudas
,
G.
, 2004, “
Unified Intelligent Motion Planning for Omni-Directional Vehicles
,”
IEEE Intelligent Vehicles Symposium
, Parma, Italy, June 14–17, pp.
419
424
.
14.
Carelli
,
R.
, and
Freire
,
E. O.
, 2003, “
Corridor Navigation and Wall-Following Stable Control for Sonar-Based Mobile Robots
,”
Rob. Auton. Syst.
0921-8890,
45
(
3,4
), pp.
235
247
.
15.
Munoz
,
V. F.
,
Garcia-Cerezo
,
A.
, and
Cruz
,
A.
, 1999, “
Mobile Robots Trajectory Planning Approach Under Motion Restrictions
,”
Integ. Comput.-Aided Eng.
,
6
(
4
), pp.
331
347
.
16.
Chiaverini
,
S.
, and
Fusco
,
G.
, 1999, “
A New Inverse Kinematics Algorithm With Path Tracking Capability Under Velocity and Acceleration Constraints
,”
38th IEEE Conference on Decision and Control
, Vol.
3
, pp.
2064
2069
.
17.
Craig
,
J. J.
, 2005,
Introduction to Robotics: Mechanics and Control
, 3rd ed.,
Pearson Prentice–Hall
, Upper Saddle River, NJ, pp.
39
51
.
18.
Craig
,
J. J.
, 2005,
Introduction to Robotics: Mechanics and Control
, 3rd ed.,
Pearson Prentice–Hall
, Upper Saddle River, NJ, pp.
203
208
.
19.
Wu
,
J.
, 2004, “
Dynamic Path Planning of an Omni-Directional Robot in a Dynamic Environment
,” Ph.D. dissertation, Ohio University.
You do not currently have access to this content.