This brief paper treats the question of adaptive control of a projectile fin using a piezoelectric actuator. The hollow projectile fin is rigid, within which a flexible cantilever beam with a piezoelectric active layer is mounted. The model of the fin-beam system includes the aerodynamic moment, which is a function of angle of attack of the projectile. The rotation angle of the fin is controlled by deforming the flexible beam, which is hinged at the tip of the rigid fin. An adaptive servoregulator is designed for the control of the fin angle using the fin angle and its derivative for feedback. Interestingly, the knowledge of the dimension and parameters of the system is not essenstial for the synthesis of the control law. In the closed-loop system, the fin angle asymptotically converges to the desired set point and the elastic modes converge to their equilibrium values. Computer simulation and laboratory test results are presented to show the performance of the controller.

1.
Batra
,
R. C.
, and
Ghosh
,
K.
, 1995, “
Deflection Control During Dynamic Deformations of a Rectangular Plate Using Piezoceramic Elements
,”
AIAA J.
0001-1452,
33
(
8
), pp.
1547
1548
.
2.
Lin
,
C. C.
,
Hsu
,
C. Y.
, and
Huang
,
H. N.
, 1997, “
Finite Element Analysis on Deflection Control of Plates With Piezoelectric Actuator
,”
Compos. Struct.
0263-8223,
35
, pp.
423
433
.
3.
Rabinovitch
,
O.
, and
Vinson
,
J.
, 2003, “
On the Design of Piezoelectric Smart Fins for Flight Vehicles
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
686
695
.
4.
Rabinovitch
,
O.
, and
Vinson
,
J.
, 2003, “
Smart Fins: Analytical Modeling and Basic Design Concepts
,”
Mech. Adv. Mater. Struct
,
10
, pp.
249
269
.
5.
Barrett
,
R.
, 1994, “
Active Plate and Missile Wing Development Using Directionally Attached Piezoelectric Elements
,”
AIAA J.
0001-1452,
32
(
3
), pp.
601
609
.
6.
Bent
,
A. A.
,
Hagood
,
N. W.
, and
Rodgers
,
J. P.
, 1995, “
Anisotropic Actuation With Piezoelectric Fiber Composites
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
6
(
3
), pp.
338
349
.
7.
Shen
,
Y.
, and
Homaifar
,
A.
, 2001, “
Vibration Control of Flexible Structures With PZT Sensors and Actuators
,”
J. Vib. Control
1077-5463,
7
, pp.
417
451
.
8.
Bailey
,
T.
, and
Hubbard
,
J. E.
, 1985, “
Distributed Piezoelectric-Polymer Active Vibration Control of a Cantilever Beam
,”
J. Guid. Control Dyn.
0731-5090,
8
(
5
), pp.
605
611
.
9.
Choi
,
S. B.
, and
Lee
,
C. H.
, 1997, “
Force Tracking Control of a Flexible Gripper Driven by Piezoceramic Actuator
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
439
445
.
10.
Baz
,
A.
, and
Poh
,
S.
, 1988, “
Performance of an Active Control System With Piezoelectric Actuator
,”
J. Sound Vib.
0022-460X,
126
(
2
), pp.
327
343
.
11.
Choi
,
S. B.
,
Cheong
,
C.-C.
, and
Lee
,
C.-H.
, 1996, “
Position Tracking Control of a Smart Flexible Structure Featuring a Piezofilm Actuator
,”
J. Guid. Control Dyn.
0731-5090,
19
(
6
), pp.
1364
1369
.
12.
Kaufmann
,
H.
,
Barkana
,
I.
, and
Sobel
,
K.
, 1998,
Direct Adaptive Control Algorithms
,
Springer-Verlag
,
New York
.
13.
Annaswamy
,
A. M.
, and
Clancy
,
D. J.
, 1996, “
Adaptive Control Strategies for Flexible Space Structures
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
32
(
3
), pp.
952
966
.
14.
Singh
,
S. N.
, and
de Araujo
,
A. D.
, 1999, “
Adaptive Control and Stabilization of Elastic Spacecraft
,”
IEEE Trans. Aerosp. Electron. Syst.
0018-9251,
35
, pp.
115
122
.
15.
Mani
,
S.
,
Singh
,
S. N.
,
Parimi
,
S. K.
,
Yim
,
W.
, and
Trabia
,
M.
, 2005, “
Adaptive Rotation of a Smart Projectile Fin by Piezoelectric Flexible Beam Actuator
,”
J. Vib. Control
1077-5463,
11
(
8
), pp.
1085
1102
.
16.
Ioannou
,
P. A.
, and
Sun
,
J.
, 1996,
Robust Adaptive Control
,
Prentice Hall
,
Englewood Cliffs, NJ
.
17.
Fradkov
,
A. L.
,
Miroshnik
,
I. V.
, and
Nikiforov
,
V. O.
, 1999,
Nonlinear and Adaptive Control of Complex Systems
,
Kluwer Academic
,
Boston
.
You do not currently have access to this content.