This paper proposes a structure and control approach for the energy saving servo control of a pneumatic servo system. The energy saving approach is enabled by supplementing a standard four-way spool valve controlled pneumatic actuator with an additional two-way valve that enables flow between the cylinder chambers. The “crossflow” valve enables recirculation of pressurized air, and thus enables the extraction of stored energy that would otherwise be exhausted to the atmosphere. A control approach is formulated that supplements, to the extent possible, the mass flow required by a sliding mode controller with the recirculated mass flow provided by the crossflow valve. Following the control formulation, experimental results are presented that indicate energy savings of 25–52%, with essentially no compromise in tracking performance relative to the standard sliding mode control approach (i.e., relative to control via a standard four-way spool valve, without the supplemental flow provided by the crossflow valve).

1.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion with Compressed Air—I
,”
Trans. ASME
0097-6822,
78
, pp.
233
242
.
2.
Shearer
,
J. L.
, 1956, “
Study of Pneumatic Processes in the Continuous Control of Motion with Compressed Air—II
,”
Trans. ASME
0097-6822,
78
, pp.
243
249
.
3.
Shearer
,
J. L.
, 1957, “
Nonlinear Analog Study of a High-Pressure Servomechanism
,”
Trans. ASME
0097-6822,
79
, pp.
465
472
.
4.
Mannetje
,
J. J.
, 1981, “
Pneumatic Servo Design Method Improves System Bandwidth Twentyfold
,”
Control Eng.
0010-8049,
28
(
6
), pp.
79
83
.
5.
Ben-Dov
,
D.
, and
Salcudean
,
S. E.
, 1998, “
A Force Controlled Pneumatic Actuator
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
5
), pp.
732
742
.
6.
Wang
,
J.
,
Pu
,
J.
, and
Moore
,
P.
, 1999, “
A Practical Control Strategy for Servo-Pneumatic Actuator Systems
,”
Control Eng. Pract.
0967-0661,
7
, pp.
1483
1488
.
7.
Maeda
,
S.
,
Kawakami
,
Y.
, and
Nakano
,
K.
, 1999, “
Position Control of Pneumatic Lifters
,”
J. Jpn. Hydraul. Pneum. Soc.
,
30
(
4
), pp.
89
95
.
8.
Ning
,
S.
, and
Bone
,
G. M.
, 2002, “
High Steady-State Accuracy Pneumatic Servo Positioning System with PVA/PV Control and Friction Compensation
,” in
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
, pp.
2824
2829
.
9.
Bobrow
,
J.
, and
McDonell
,
B.
, 1998, “
Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
(
5
), pp.
732
742
.
10.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part I—Nonlinear Mathematical Model
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
416
425
.
11.
Richer
,
E.
, and
Hurmuzlu
,
Y.
, 2000, “
A High Performance Pneumatic Force Actuator System: Part II—Nonlinear Control Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
122
(
3
), pp.
426
434
.
12.
Sanville
,
F. E.
, 1986, “
Two-Level Compressed Air Systems for Energy Saving
,” The Seventh International Fluid Control Symposium, pp.
375
383
.
13.
Quaglia
,
G.
, and
Gastaldi
,
L.
, 1994, “
The Design of Pneumatic Actuator With Low Energy Consumption
,” The Fourth Triennial International Symposium on Fluid Control, Fluid Measurement, and Visualization, pp.
1061
1066
.
14.
Quaglia
,
G.
, and
Gastaldi
,
L.
, 1995, “
Model and Dynamic of Energy Saving Pneumatic Actuator
,” The Fourth Scandinavian International Conference on Fluid Power, Vol.
1
, pp.
481
492
.
15.
Pu
,
J.
,
Wang
,
J. H.
,
Moore
,
P. R.
, and
Wong
,
C. B.
, 1997, “
A New Strategy for Closed-Loop Control of Servo-Pneumatic Systems with Improved Energy Efficiency and System Response
,” The Fifth Scandinavian International Conference on Fluid Power, pp.
339
352
.
16.
Wang
,
J.
,
Wang
,
J-D.
, and
Liau
,
V.
, 2000, “
Energy Efficient Optimal Control of Pneumatic Actuator Systems
,”
System Science
,
26
(
3
), pp.
109
123
.
17.
Kawakami
,
Y.
,
Terashima
,
Y.
, and
Kawai
,
S.
, 1999, “
Application of Energy-Saving to Pneumatic Driving Systems
,” in
Proceedings of the Fourth JHPS International Symposium
, pp.
201
206
.
18.
Arinaga
,
T.
,
Kawakami
,
Y.
,
Terashima
,
Y.
, and
Kawai
,
S.
, 2000, “
Approach for Energy-Saving of Pneumatic Systems
,” in
Proceedings of the First FPNI-PhD Symposium
, pp.
49
56
.
19.
Bachmann
,
J. R.
, and
Surgenor
,
B. W.
, 1997, “
On Design and Performance of a Closed Circuit Pneumatic Positioning System
,” The Fifth Scandinavian International Conference on Fluid Power, Vol.
1
, pp.
309
322
.
20.
Brun
,
X.
,
Thomasset
,
D.
,
Sesmat
,
S.
, and
Scavarda
,
S.
, 1999, “
Limited Energy Consumption in Positioning Control of an Electropneumatic Actuator
,” Bath Workshop on Power Transmission and Motion Control, pp.
199
211
.
21.
Al-Dakkan
,
K. A.
,
Goldfarb
,
M.
, and
Barth
,
E. J.
, 2003, “
Energy Saving Control for Pneumatic Servo Systems
,” ASME/IEEE International Conference on Advanced Intelligent Mechatronics, Vol.
1
, pp.
284
289
.
22.
Al-Dakkan
,
K. A.
,
Barth
,
E. J.
, and
Goldfarb
,
M.
, 2003, “
A Multi-Objective Sliding Mode Approach for the Energy Saving Control of Pneumatic Servo Systems
,” ASME International Mechanical Engineering Congress and Exposition, IMECE2003-42746.
23.
Slotine
,
J. J. E.
, and
Li
,
W.
, 1991,
Applied Nonlinear Control
,
Prentice-Hall
, NJ.
You do not currently have access to this content.