This paper deals with the design of robust control strategies to govern the position and attitude of a Darwin-type spacecraft with large flexible appendages. The satellite is one of the flyers of a multiple spacecraft constellation for a future ESA mission. It presents a 6×6 high order multiple-input–multiple-output (MIMO) model with large uncertainty and loop interactions introduced by the flexible modes of the low-stiffness appendages. The scientific objectives of the satellite require very demanding control specifications for position and attitude accuracy, high disturbance rejection, loop-coupling attenuation, and low controller order. The paper demonstrates the feasibility of a sequential nondiagonal MIMO quantitative feedback theory (QFT) strategy controlling the Darwin spacecraft and compares the results with H-infinity and sequential diagonal MIMO QFT designs.

1.
ESA
(European Space Agency), in www.esa.intwww.esa.int
2.
NASA-JPL
(Jet Propulsion Laboratory), in http://www.jpl.nasa.gov/http://www.jpl.nasa.gov/
3.
Darwin Mission, in http://www.esa.int/science/darwinhttp://www.esa.int/science/darwin, E. S. A.-S. Science, Ed.
5.
Sidi
,
M.
, 1997,
Spacecraft Dynamics and Control: A Practical Engineering Approach
,
Cambridge University Press
,
Cambridge
.
6.
Joshi
,
S. M.
, 1989,
Control of Large Flexible Space Structures
,
Springer-Verlag
,
Berlin
, Vol.
131
.
7.
Williams
,
C.
, 1976, “
Dynamics Modelling and Formulation Techniques for Non-Rigid Spacecraft
,”
ESA Dyn. and Control of Non-Rigid Space Vehicles 18 P(SEE N 76-28297 19-18)
.
8.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
, 1st ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Rosenbrock
,
H. H.
, 1970,
State Space and Multivariable Theory
,
Nelson
,
London
.
10.
O’Reilly
,
J.
, 1987,
Multivariable Control for Industrial Applications
,
Peter Peregrinus
,
London
, Vol.
32
.
11.
Maciejowski
,
J. M.
, 1989,
Multivariable Feedback Design
,
Addison-Wesley
,
Harlow, UK
.
12.
Skogestad
,
S.
, and
Postlethwaite
,
I.
, 2005,
Multivariable Feedback Control: Analysis and Design
, 2nd ed.,
Wiley
,
Chichester, West Sussex, UK
.
13.
Houpis
,
C. H.
,
Rasmussen
,
S. J.
, and
Garcia-Sanz
,
M.
, 2006,
Quantitative Feedback Theory Fundamentals and Applications
, 2nd ed.,
CRC
,
Boca Raton, FL
.
14.
Marlin
,
E.
, 1995,
Process Control: Designing Processes and Control Systems for Dynamic Performance
,
McGraw-Hill
,
New York
.
15.
Leithead
,
W. E.
, and
O’Reilly
,
J.
, 1992, “
m-Input m-Output Feedback Control by Individual Channel Design
,”
Int. J. Control
0020-7179,
56
, pp.
1347
1397
.
16.
Horowitz
,
I.
, 1963,
Synthesis of Feedback Systems
,
Academic Press
,
New York
.
17.
Horowitz
,
I.
, 1979, “
Quantitative Synthesis of Uncertain Multiple Input-Output Feedback Systems
,”
Int. J. Control
0020-7179,
30
, pp.
81
106
.
18.
Horowitz
,
I. M.
, and
Sidi
,
M.
, 1980, “
Practical Design of Feedback Systems With Uncertain Multivariable Plants
,”
Int. J. Syst. Sci.
0020-7721,
11
, pp.
851
875
.
19.
Horowitz
,
I.
, 1982, “
Improved Design Technique for Uncertain Multiple Input-Output Feedback Systems
,”
Int. J. Control
0020-7179,
36
, pp.
977
988
.
20.
Horowitz
,
I. M.
,
Yaniv
,
O.
, and
Neumann
,
L.
, 1982, “
YF16CVV MIMO Design With Uncertainty Parameters
,” Paper No. AFWAL-TR-83-3036.
21.
Franchek
,
M. A.
, and
Nwokah
,
O.
, 1995, “
Robust Multivariable Control of Distillation Columns Using Non-Diagonal Controller Matrix
,”
ASME Dyn. Syst. Control Div.
,
57
, pp.
257
264
.
22.
Franchek
,
M.
,
Herman
,
P.
, and
Nwokah
,
O.
, 1997, “
Robust Non-Diagonal Controller Design for Uncertain Multivariable Regulating Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
80
85
.
23.
Boje
,
E.
, and
Nwokah
,
O.
, 1997, “
Quantitative Feedback Design Using Forward Path Decoupling
,” presented at the
Symposium on Quantitative Feedback Theory and Other Frequency Domain Methods
,
University of Strathclyde
,
UK
.
24.
Boje
,
E.
, and
Nwokah
,
O.
, 1999, “
Quantitative Multivariable Feedback Design for a Turbofan Engine With Forward Path Decoupling
,”
Int. J. Robust Nonlinear Control
1049-8923,
9
, pp.
857
882
.
25.
Yaniv
,
O.
, 1995, “
MIMO QFT Using Non-Diagonal Controllers
,”
Int. J. Control
0020-7179,
61
, pp.
245
253
.
26.
Kerr
,
M. L.
, 2004, “
Robust Control of an Articulating Flexible Structure Using MIMO QFT
.”
Australia
,
The University of Queensland
.
27.
Lan
,
C.
,
Kerr
,
M. L.
, and
Jayasuriya
,
S.
, 2004, “
Synthesis of Controllers for Non-Minimum Phase and Unstable Systems Using Non-Sequential MIMO Quantitative Feedback Theory
,” presented at the
American Control Conference
,
Boston, MA
.
28.
De Bedout
,
J. M.
, and
Franchek
,
M. A.
, 2002, “
Stability Conditions for the Sequential Design of Nondiagonal Multivariable Feedback Controllers
,”
Int. J. Control
0020-7179,
75
, pp.
910
922
.
29.
Garcia-Sanz
,
M.
, and
Egaña
,
I.
, 2003, “
Quantitative Non-Diagonal Controller Design for Multivariable Systems With Uncertainty
,”
Int. J. Robust Nonlinear Control
1049-8923,
12
, pp.
321
333
.
30.
Garcia-Sanz
,
M.
,
Egaña
,
I.
, and
Barreras
,
M.
, 2005, “
Design of Quantitative Feedback Theory Nondiagonal Controllers for Use in Uncertain Multiple-Input Multiple-Output Systems
,”
IEE Proc.: Control Theory Appl.
1350-2379,
152
, pp.
177
187
.
31.
Garcia-Sanz
,
M.
, and
Barreras
,
M.
, 2006, “
Non-Diagonal QFT Controller Design for a 3-Input 3-Output Industrial Furnace
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
128
, pp.
319
329
.
32.
Garcia-Sanz
,
M.
, and
Eguinoa
,
I.
, 2005, “
Improved Non-Diagonal MIMO QFT Design Technique Considering Non-Minimum Phase Aspects
,” presented at the
Seventh International Symposium on Quantitative Feedback Theory QFT and Robust Frequency Domain Methods
,
Lawrence, KS
.
33.
Garcia-Sanz
,
M.
, 2005, “
Quantitative Robust Control Engineering. Theory and Applications
,” presented at
NATO-OTAN, RTO Lecture Series SCI-166, Partnership for Peace (PFP)
,
Sweden, Swizerland, Romania
.
34.
Zames
,
G.
, 1976, “
Feedback and Complexity
,”
IEEE Conference on Decision and Control
.
35.
Zames
,
G.
, 1981, “
Feedback and Optimal Sensitivity: Model Reference Transformations, Multiplicative Seminorms, and Approximate Inverses
,”
IEEE Trans. Autom. Control
0018-9286,
AC-26
, pp.
301
320
.
36.
Zames
,
G.
, and
Francis
,
B.
, 1983, “
Feedback, Minimax, Sensitivity, and Optimal Robustness
,”
IEEE Trans. Autom. Control
0018-9286,
AC-28
, pp.
585
601
.
37.
Safonov
,
M. G.
, 1982, “
Stability Margins of Diagonally Perturbed Multivariable Feedback Systems
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
129
, pp.
251
256
.
38.
Doyle
,
J. C.
, 1982, “
Analysis of Feedback Systems With Structured Uncertainty
,”
IEE Proc.-D: Control Theory Appl.
0143-7054,
129
, pp.
242
250
.
39.
Zhou
,
K.
,
Doyle
,
J. C.
, and
Glover
,
K.
, 1995,
Robust and Optimal Control
, 1st ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
40.
Zhao
,
Y.
, and
Jayasuriya
,
S.
, 1993, “
Mixed Sensitivity Formulation of Quantitative Feedback Theory
,” presented at the
Proceedings of the 1993 ASME Winter Annual Meeting
,
New Orleans, LA
. Nov. 28–Dec. 3.
41.
Zhao
,
Y.
, and
Jayasuriya
,
U.
, 1996, “
A New Formulation of Multiple-Input Multiple-Output Quantitative Feedback Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
, pp.
748
752
.
42.
Zhao
,
Y.
, and
Jayasuriya
,
S.
, 1998, “
An Hinfinity Formulation of Quantitative Feedback Theory
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
120
, pp.
305
313
.
43.
Nwokah
,
O.
,
Jayasuriya
,
S.
, and
Chait
,
Y.
, 1992, “
Parametric Robust Control by Quantitative Feedback Theory
,”
J. Guid. Control Dyn.
0731-5090,
15
, pp.
207
214
.
44.
Lee
,
J. W.
,
Chait
,
Y.
, and
Steinbuch
,
M.
, 2000, “
On QFT Tuning of Multivariable Μ Controllers
,”
Automatica
0005-1098,
36
, pp.
1701
1708
.
45.
Sidi
,
M.
, 2002, “
A Combined QFT/H-Inf Design for TDOF Uncertain Feedback Systems
,”
Int. J. Control
0020-7179,
75
, pp.
475
489
.
46.
Nordgren
,
R. E.
,
Nwokah
,
O. D. I.
, and
Francheck
,
M. A.
, 1994, “
New Formulations for Quantitative Feedback Theory
,”
Int. J. Robust Nonlinear Control
1049-8923,
2
, pp.
47
64
.
49.
Bristol
,
E. H.
, 1966, “
On a New Measure of Interactions for Multivariable Process Control
,”
IEEE Trans. Autom. Control
0018-9286,
11
, pp.
133
134
.
50.
Grosdidier
,
P.
,
Morari
,
M.
, and
Holt
,
B. R.
, 1985, “
Closed-Loop Properties From Steady-State Gain Information
,”
Ind. Eng. Chem. Fundam.
0196-4313,
24
, pp.
221
235
.
51.
Nett
,
C. N.
, and
Manousiouthakis
,
V.
, 1987, “
Euclidean Condition and Block Relative Gain: Connections, Conjectures, and Clarifications
,”
IEEE Trans. Autom. Control
0018-9286,
AC-32
, pp.
405
407
.
52.
Hovd
,
M.
, and
Skogestad
,
S.
, 1992, “
Simple Frequency-Dependent Tools for Control System Analysis, Structure Selection and Design
,”
Automatica
0005-1098,
28
, pp.
989
996
.
53.
Lundstrom
,
P.
, and
Skogestad
,
S.
, 1995, “
Opportunities and Difficulties With 5×5 Distillation Control
,”
J. Process Control
0959-1524,
5
, pp.
249
261
.
54.
D’Azzo
,
J. J.
,
Houpis
,
C. H.
, and
Sheldon
,
S. N.
, 2003,
Linear Control System Analysis and Design With Matlab
, 5th ed.,
Dekker
,
New York
.
You do not currently have access to this content.