A set of memory-based properties is employed in this paper for modeling multiple-path hysteresis response of piezoelectric actuators. These properties, namely, targeting turning points, curve alignment, and wiping-out effect, are applied in a linear mapping strategy to develop a mathematical framework for modeling the hysteresis phenomenon. More specifically, the locations of turning points are detected and recorded for the prediction of future hysteresis trajectory. An internal trajectory is assumed to follow a multiple-segmented path via a continuous connection of several curves passing through every two consequent turning points. These curves adopt their shapes via a linear mapping strategy from the reference hysteresis curves with polynomial configurations. Experimental implementation of the proposed method demonstrates slight improvement over the widely used Prandtl–Ishlinskii hysteresis operator. However, to maintain the level of precision during the operation, a sufficient number of memory units must be included to record the turning points. Otherwise, in the event of memory saturation, two memory-allocation modes, namely, “open” and “closed” strategies, can be implemented. It is shown that the closed memory-allocation strategy demonstrates better performance by keeping the most important target points. The proposed modeling framework is adopted in an inverse model-based control scheme for feedforward compensation of hysteresis nonlinearity. The controller is experimentally implemented on a three-dimensional nanopositioning stage for surface topography tracking, a problem typically encountered in scanning probe microscopy applications.

1.
Takayuki
,
S.
,
Kazuya
,
U.
,
Eiji
,
M.
, and
Shiro
,
S.
, 2004, “
Fabrication and Characterization of Diamond AFM Probe Integrated With PZT Thin Film Sensor and Actuator
,”
Sens. Actuators, A
0924-4247,
114
, pp.
398
405
.
2.
Yang
,
J. S.
, and
Fang
,
H. Y.
, 2003, “
A Piezoelectric Gyroscope Based on Extensional Vibrations of Rods
,”
Int. J. Appl. Electromagn. Mech.
1383-5416,
17
, pp.
289
300
.
3.
Kaqawa
,
Y.
,
Wakatsuki
,
N.
,
Takao
,
T.
, and
Yoichi
,
T.
, 2006, “
A Tubular Piezoelectric Vibrator Gyroscope
,”
IEEE Sens. J.
1530-437X,
6
, pp.
325
330
.
4.
Shaoze
,
Y.
,
Fuxing
,
Z.
,
Zhen
,
Q.
, and
Shizhu
,
W.
, 2006, “
A 3-DOFs Mobile Robot Driven by a Piezoelectric Actuator
,”
Smart Mater. Struct.
0964-1726,
15
, pp.
N7
N13
.
5.
Lopez
,
S. J.
,
Miribel
,
C. P.
,
Montane
,
E.
,
Puig
,
V. M.
,
Bota
,
S. A.
,
Samitier
,
J.
,
Simu
,
U.
, and
Johansson
,
S.
, 2001, “
High Accuracy Piezoelectric-Based Microrobot for Biomedical Applications
,”
IEEE Symposium on Emerging Technologies and Factory Automation, ETFA
, Vol.
2
, pp.
603
609
.
6.
Ping
,
G.
, and
Musa
,
J.
, 1995, “
Modeling Hysteresis in Piezoceramic Actuators
,”
Precis. Eng.
0141-6359,
17
, pp.
211
221
.
7.
Ping
,
G.
, and
Musa
,
J.
, 1997, “
Generalized Preisach Model for Hysteresis Nonlinearity of Piezoceramic Actuators
,”
Precis. Eng.
0141-6359,
20
, pp.
99
111
.
8.
Kuhnen
,
K.
, and
Janocha
,
H.
, 2001, “
Inverse Feedforward Controller for Complex Hysteretic Nonlinearities in Smart-Material Systems
,”
Control Intell. Syst.
1480-1752,
29
, pp.
74
83
.
9.
Kuhnen
,
K.
, and
Janocha
,
H.
, 2002, “
Complex Hysteresis Modeling of a Broad Class of Hysteretic Nonlinearities
,”
Proceeding of the Eighth International Conference on New Actuators
,
Bremen
, Jun. pp.
688
691
.
10.
Aderiaens
,
H.
,
Koning
,
W.
, and
Baning
,
R.
, 2000, “
Modeling Piezoelectric Actuators
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
, pp.
331
341
.
11.
Goldfarb
,
M.
, and
Celanovic
,
N.
, 1997, “
A Lumped Parameter Electromechanical Model for Describing the Nonlinear Behavior of Piezoelectric Actuators
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
119
, pp.
478
485
.
12.
Bashash
,
S.
, and
Jalili
,
N.
, 2006, “
Underlying Memory-Dominant Nature of Hysteresis in Piezoelectric Materials
,”
J. Appl. Phys.
0021-8979,
100
(
1
), pp.
014103
014109
.
13.
Bashash
,
S.
, and
Jalili
,
N.
, 2007, “
Intelligent Rules of Hysteresis in Feedforward Trajectory Control of Piezoelectrically-Driven Nanostagers
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
342
349
.
14.
Bashash
,
S.
, and
Jalili
,
N.
, 2005, “
A New Hysteresis Model for Piezoelectric Actuators With Application to Precision Trajectory Control
,”
Proceeding of 2005 ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov. 5–11.
15.
Tzen
,
J. J.
,
Jeng
,
S. L.
, and
Chieng
,
W. H.
, 2003, “
Modeling of Piezoelectric Actuator for Compensation and Controller Design
,”
Precis. Eng.
0141-6359,
27
, pp.
70
76
.
16.
Bashash
,
S.
, and
Jalili
,
N.
, 2007, “
Modeling of Piezo-Flexural Nanopositioning Systems Subjected to Rate-Varying Inputs
,”
Proceedings of 14th SPIE Annual Symposium on Smart Structures and Materials
,
San Diego, CA
, Mar.
17.
Bashash
,
S.
, and
Jalili
,
N.
, 2007, “
Robust Multiple-Frequency Trajectory Tracking Control of Piezoelectrically-Driven Micro/Nano-Positioning Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
15
(
5
), pp.
867
878
.
18.
Lining
,
S.
, 2004, “
Tracking Control of Piezoelectric Actuator Based on a New Mathematical Model
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
1439
1444
.
19.
Changhai
,
R.
, and
Lining
,
S.
, 2005, “
Improving Positioning Accuracy of Piezoelectric Actuators by Feedforward Hysteresis Compensation Based on a New Mathematical Model
,”
Rev. Sci. Instrum.
0034-6748,
76
, p.
095111
.
20.
Berlincourt
,
D.
, 1981, “
Piezoelectric Ceramics: Characteristics and Applications
,”
J. Acoust. Soc. Am.
0001-4966,
70
, pp.
1586
1595
.
21.
Changhai
,
R.
, and
Lining
,
S.
, 2005, “
Hysteresis and Creep Compensation for Piezoelectric Actuator in Open-Loop Operation
,”
Sens. Actuators, A
0924-4247,
122
, pp.
124
130
.
22.
Hu
,
H.
,
Georgiou
,
H. M. S.
, and
Ben-Mrad
,
R.
, 2005, “
Enhancement of Tracking Ability in Piezoceramic Actuators Subject to Dynamic Excitation Conditions
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
10
, pp.
230
239
.
23.
Hu
,
H.
, and
Ben-Mrad
,
R.
, 2004, “
A Discrete-Time Compensation Algorithm for Hysteresis in Piezoceramic Actuators
,”
Mech. Syst. Signal Process.
0888-3270,
18
, pp.
169
185
.
You do not currently have access to this content.