Squeeze film damping has a significant effect on the dynamic response of microelectromechanical system (MEMS) devices that employ perforated microstructures with large planar areas and small gap widths separating them from the substrate. Perforations can alter the effect of squeeze film damping by allowing the gas underneath the device to easily escape, thereby lowering damping. By decreasing the size of the holes, damping increases and the squeeze film damping effect increases. This can be used to minimize the out-of-plane motion of the microstructures toward the substrate, thereby minimizing the possibility of contact and stiction. This paper aims to explore the use of the squeeze film damping phenomenon as a way to mitigate shock and minimize the possibility of stiction and failure in this class of MEMS devices. As a case study, the performance of a G-sensor (threshold accelerometer) employed in an arming and fusing chip is investigated. The effect of changing the size of the perforation holes and the gap width separating the microstructure from the substrate are studied. A multiphysics finite-element model built using the software ANSYS is utilized for the fluidic and transient structural analysis. A squeeze film damping model, for both the air underneath the structure and the flow of the air through the perforations, is developed. Results are shown for various models of squeeze film damping assuming no holes, large holes, and assuming a finite pressure drop across the holes, which is the most accurate way of modeling. It is found that the threshold of shock that causes the G-sensor to contact the substrate has increased significantly when decreasing the holes size or the gap width, which is very promising to help mitigate stiction in this class of devices, thereby improving their reliability.

1.
Blech
,
J. J.
, 1983, “
Isothermal Squeeze Films
,”
ASME J. Lubr. Technol.
0022-2305,
105
, pp.
615
620
.
2.
Yoon
,
S. W.
,
Yazdi
,
N.
,
Perkins
,
N. C.
, and
Najafi
,
K.
, 2006, “
Micromachined Integrated Shock Protection for MEMS
,”
Sens. Actuators, A
0924-4247,
130–131
, pp.
166
175
.
3.
Srikar
,
V. T.
, and
Senturia
,
S. D.
, 2002, “
The Reliability of Microelectromechanical Systems (MEMS) in Shock Environments
,”
J. Micromech. Microeng.
0960-1317,
11
, pp.
206
213
.
4.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
, 2004, “
A New Approach to the Modeling and Simulation of Flexible Microstructures Under the Effect of Squeeze-Film Damping
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
170
181
.
5.
Senturia
,
S.
, 2000,
Microsystem Design
,
Kluwer
,
Dordrecht
.
6.
Rabinovich
,
V. L.
,
Gupta
,
R. K.
, and
Senturia
,
S. D.
, 1997, “
The Effect of Release Etch Holes on the Electromechanical Behavior of MEMS Structures
,”
Transducers 1997
,
Chicago, IL
, Jun. 16–19, pp.
1125
1128
.
7.
Homentcovschi
,
D.
, and
Miles
,
R.
, 2004, “
Modeling of Viscous Damping of Perforated Planar Microstructures. Application In Acoustics
,”
J. Acoust. Soc. Am.
0001-4966,
116
, pp.
2939
2947
.
8.
Tas
,
N.
,
Sonnenberg
,
T.
,
Jansen
,
H.
,
Legtenberg
,
R.
, and
Elowenspoek
,
M.
, 1996, “
Stiction in Surface Micromachining
,”
J. Micromech. Microeng.
0960-1317,
6
, pp.
385
397
.
9.
Brown
,
T. G.
, and
Davis
,
B. S.
, 1998, “
Dynamic High-G Loading of MEMS Sensors: Ground and Flight Testing
,”
Proc. SPIE
0277-786X,
3512
, pp.
228
235
.
10.
Brown
,
T. G.
,
Davis
,
B.
,
Hepner
,
D.
,
Faust
,
J.
,
Myers
,
C.
,
Muller
,
P.
,
Harkins
,
T.
,
Hollis
,
M.
,
Miller
,
C.
, and
Placzankis
,
B.
, 2001, “
Strap-Down Microelectromechanical (MEMS) Sensors for High-G Munition Applications
,”
IEEE Trans. Magn.
0018-9464,
37
, pp.
336
342
.
11.
Atwell
,
A. R.
,
Okojie
,
R. S.
,
Kornegay
,
K. T.
,
Roberson
,
S. L.
, and
Beliveau
,
A.
, 2003, “
Simulation, Fabrication and Testing of Bulk Micromachined 6H-SiC High-G Piezoresistive Accelerometers
,”
Sens. Actuators, A
0924-4247,
104
, pp.
11
18
.
12.
Fan
,
M. S.
, and
Shaw
,
H. C.
, 2001, “
Dynamic Response Assessment for the MEMS Accelerometer Under Severe Shock Loads
,” National Aeronautics and Space Administration NASA, TP-2001-209978, Washington, DC.
13.
Li
,
G. X.
, and
Shemansky
,
F. A.
, 2000, “
Drop Test and Analysis on Micro-Machined Structures
,”
Sens. Actuators, A
0924-4247,
85
, pp.
280
286
.
14.
Younis
,
M. I.
,
Miles
,
R.
, and
Jordy
,
D.
, 2006, “
Investigation of the Response of Microstructures Under the Combined Effect of Mechanical Shock and Electrostatic Forces
,”
J. Micromech. Microeng.
0960-1317,
16
, pp.
2463
2474
.
15.
Andrews
,
M.
,
Harris
,
I.
, and
Turner
,
G.
, 1993, “
A. Comparison of Squeeze-Film Theory With Measurements on a Microstructure
,”
Sens. Actuators, A
0924-4247,
36
, pp.
79
87
.
16.
Homentcovschi
,
D.
, and
Miles
,
R. N.
, 2005, “
Viscous Damping of Perforated Planar Micromechanical Structures
,”
Sens. Actuators, A
0924-4247,
119
, pp.
544
552
.
17.
Sattler
,
R.
,
Schrag
,
G.
, and
Wachutka
,
G.
, 2002, “
Physically-Based Damping Model for Highly Perforated and Largely Deflected Torsional Actuators
,”
Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems NANOTECH 2002
,
San Juan, PR
, Apr. 22–25, Vol.
1
, pp.
124
127
.
18.
Starr
,
J. B.
, 1990, “
Squeeze Film Damping in Solid State Accelerometers
,”
Technical Digest, IEEE Solid State Sensor and Actuator Workshop
,
Hilton Head Island, SC
, Jun., pp.
44
47
.
19.
Yang
,
Y. J.
, 1998, “
Squeeze Film Damping for MEMS Structures
,” MS thesis, MIT, Cambridge, MA.
20.
Ostergaard
,
D.
, 2003, “
Using a Heat Transfer Analogy to Solve for Squeeze Film Damping and Stiffness Coefficients in MEMS Structures
,” Online http://www.ansys.com/industries/mems/mems-downloads/thermal_analogy_damping.pdfhttp://www.ansys.com/industries/mems/mems-downloads/thermal_analogy_damping.pdf.
21.
Bao
,
M. H.
,
Yang
,
H.
,
Sun
,
Y.
, and
French
,
P.
, 2003, “
Modified Reynold’s Equation and Analytical Analysis of Squeeze-Film Air Damping of Perforated Structures
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
795
800
.
22.
Steeneken
,
P. G.
,
Rijks
,
T.
,
van Beek
,
J. T.
,
Ulenaers
,
M. J.
,
De Coster
,
J.
, and
Puers
,
R.
, 2005, “
Dynamics and Squeeze Film Gas Damping of a Capacitive RF MEMS Switch
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
176
184
.
23.
Zhang
,
W. M.
,
Meng
,
G.
, and
Li
,
H. G.
, 2005, “
Modeling and Simulation of the Squeeze Film Effect on the MEMS Structures
,”
Proceedings of the Asia-Pacific Microwave Conference APMC 2005
,
Suzhou ,China
, Dec. 4–7, Vol.
2
, p.
3
.
24.
Houlihan
,
R.
, and
Kraft
,
M.
, 2005, “
Modelling Squeeze Film Effects in a MEMS Accelerometer With a Levitated Proof Mass
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
893
902
.
25.
Fan
,
L.
,
Last
,
H.
,
Wood
,
R.
,
Dudley
,
B.
,
Khan Malek
,
C.
, and
Ling
,
Z.
, 1998, “
SLIGA Based Underwater Weapon Safety and Arming System
,”
Microsyst. Technol.
0946-7076,
4
, pp.
168
171
.
26.
Swaminathan
,
R.
,
Bhaskaran
,
H.
,
Sandborn
,
P. A.
,
Subramanian
,
G.
,
Deeds
,
M. A.
, and
Cochran
,
K. R.
, 2003, “
Reliability Assessment of Delamination in Chip-To-Chip Bonded MEMS Packaging
,”
IEEE Trans. Adv. Packag.
1521-3323,
26
, pp.
141
151
.
27.
Deeds
,
M.
,
Sandborn
,
P.
, and
Swaminathan
,
R.
, 2000, “
Packaging of a MEMS Based Safety and Arming Device
,”
Proceedings of the Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ITHERM 2000
,
Las Vegas, NV
, May, pp.
107
112
.
28.
Mukherjee
,
T.
,
Zhou
,
Y.
, and
Fedder
,
G.
, 1999, “
Automated Optimal Synthesis of Microaccelerometers
,”
Technical Digest of the 12th IEEE International Conference on Micro Electro Mechanical Systems MEMS 99
,
Orlando, FL
, Jan. 17–21, pp.
326
331
.
29.
ANSYS 10.0 Professional™, www.ansys.comwww.ansys.com.
30.
Cochran
,
K. R.
,
Fan
,
L.
, and
DeVoe
,
D. L.
, 2005, “
High-Power Optical Microswitch Based on Direct Fiber Actuation
,”
Sens. Actuators, A
0924-4247,
119
, pp.
512
519
.
31.
Kovacs
,
G. T.
, 1998,
Micromachine Transducers Sourcebook
,
McGraw-Hill
,
New York
, p.
26
.
32.
Steinberg
,
D.
, 2000,
Vibration Analysis for Electronic Equipment
, 3rd ed.,
Wiley
,
New York
, p.
257
.
33.
Younis
,
M. I.
,
Al Saleem
,
F.
, and
Jordy
,
D.
, 2007, “
The Response of Clamped-Clamped Microbeams Under Mechanical Shock
,”
Int. J. Non-Linear Mech.
0020-7462,
42
, pp.
643
657
.
34.
Younis
,
M. I.
,
Jordy
,
D.
, and
Pitarresi
,
J.
, 2007, “
Computationally Efficient Approaches to Characterize the Dynamic Response of Microstructures Under Mechanical Shock
,”
J. Microelectromech. Syst.
1057-7157,
16
, pp.
628
638
.
35.
Rao
,
S. S.
, 2003,
Mechanical Vibrations
, 4th ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Veijola
,
T.
, 1999,
Equivalent Circuit Models for Micromechanical Inertial Sensors
,
Circuit Theory Laboratory Report Series CT-39
,
Helsinki University of Technology
.
37.
Mehner
,
J. E.
,
Doetzel
,
W.
,
Schauwecker
,
B.
, and
Ostergaard
,
D.
, 2003, “
Reduced Order Modeling of Fluid Structural Interactions in MEMS Based on Modal Projection Techniques
,”
12th International Conference on Solid-State Sensors, Actuators and Microsystems TRANSDUCERS 2003
,
Boston, MA
, Jun. 8–12, Vol.
2
, pp.
1840
1843
.
38.
Younis
,
M. I.
,
Al-saleem
,
F. M.
,
Miles
,
R.
, and
Su
,
Q.
, 2007, “
Characterization for the Performance of Capacitive Switches Activated by Mechanical Shock
,”
J. Micromech. Microeng.
0960-1317,
17
, pp.
1360
1370
.
You do not currently have access to this content.