It is shown that output sensitivities of dynamic models can be better delineated in the time-scale domain. This enhanced delineation provides the capacity to isolate regions of the time-scale plane, coined as parameter signatures, wherein individual output sensitivities dominate the others. Due to this dominance, the prediction error can be attributed to the error of a single parameter at each parameter signature so as to enable estimation of each model parameter error separately. As a test of fidelity, the estimated parameter errors are evaluated in iterative parameter estimation in this paper. The proposed parameter signature isolation method (PARSIM) that uses the parameter error estimates for parameter estimation is shown to have an estimation precision comparable to that of the Gauss–Newton method. The transparency afforded by the parameter signatures, however, extends PARSIM’s features beyond rudimentary parameter estimation. One such potential feature is noise suppression by discounting the parameter error estimates obtained in the finer-scale (higher-frequency) regions of the time-scale plane. Another is the capacity to assess the observability of each output through the quality of parameter signatures it provides.

1.
Nowak
,
R. D.
, 2002, “
Nonlinear System Identification
,”
Circuits Syst. Signal Process.
0278-081X,
21
(
1
), pp.
109
122
.
2.
Juditsky
,
A.
,
Hjalmarsson
,
H.
,
Benveniste
,
A.
,
Delyon
,
B.
,
Ljung
,
L.
,
Sjobergs
,
J.
, and
Zhang
,
Q.
, 1995, “
Nonlinear Black-Box Models in System Identification: Mathematical Foundations
,”
Automatica
0005-1098,
31
(
12
), pp.
1725
1750
.
3.
Sastry
,
P. S.
,
Santharam
,
G.
, and
Unnikrishnan
,
K. P.
, 1994, “
Memory Neuron Networks for Identification and Control of Dynamic Systems
,”
IEEE Trans. Neural Netw.
1045-9227,
5
(
2
), pp.
306
319
.
4.
Parlos
,
A. G.
,
Chong
,
K. T.
, and
Atiya
,
A. F.
, 1994, “
Application of the Recurrent Multilayer Perceptron in Modeling Complex Process Dynamics
,”
IEEE Trans. Neural Netw.
1045-9227,
5
(
2
), pp.
255
266
.
5.
Schetzen
,
M.
, 1980,
The Volterra and Wiener Theories of Nonlinear Systems
,
Wiley
,
New York
.
6.
Ghanem
,
R.
, and
Romeo
,
F.
, 2001, “
A Wavelet-Based Approach for Model and Parameter Identification of Non-Linear Systems
,”
Int. J. Non-Linear Mech.
0020-7462,
36
, pp.
835
859
.
7.
Chen
,
S. -L.
, and
Ho
,
K. -C.
, 2004, “
Identification of Nonlinear Systems by Haar Wavelet
,”
Proceedings of IMECE04
, Paper No. IMECE2004-62417.
8.
Ljung
,
L.
, 1999,
System Identification: Theory for the User
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, NJ
.
9.
Soderstrom
,
T.
, and
Stoica
,
P.
, 1989,
System Identification
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
10.
Viberg
,
M.
,
Wahlberg
,
B.
, and
Ottersten
,
B.
, 1997, “
Analysis of State Space System Identification Methods Based on Instrumental Variables and Subspace Fitting
,”
Automatica
0005-1098,
33
(
9
), pp.
1603
1616
.
11.
Astrom
,
K.
, and
Eykhoff
,
P.
, 1971, “
System Identification—A Survey
,”
Automatica
0005-1098,
7
, pp.
123
162
.
12.
Hertz
,
J.
,
Krogh
,
A.
, and
Palmer
,
R. G.
, 1991,
Introduction to the Theory of Neural Computation
,
Addison-Wesley
,
Reading, MA
.
13.
Seber
,
G. A. F.
, and
Wild
,
C. J.
, 1989,
Nonlinear Regression
,
Wiley
,
New York
.
14.
Goldberg
,
D. E.
, 1989,
Genetic Algorithms
,
Addison-Wesley
,
Reading, MA
.
15.
Fletcher
,
R.
, 1987,
Practical Methods of Optimization
, 2nd ed.,
Wiley
,
New York
.
16.
Rubinstein
,
R. Y.
, 1986,
Monte Carlo Optimization, Simulation, and Sensitivity of Queueing Networks
,
Wiley
,
New York
.
17.
Sastry
,
S.
, and
Bodson
,
M.
, 1989,
Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
18.
Narendra
,
K. S.
, and
Annaswamy
,
A. M.
, 1989,
Stable Adaptive Systems
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
19.
Ioannou
,
P. A.
, and
Sun
,
J.
, 1996,
Robust Adaptive Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
20.
Ljung
,
L.
, and
Glad
,
T.
, 1994, “
On Global Identifiability for Arbitrary Model Parametrizations
,”
Automatica
0005-1098,
30
(
2
), pp.
265
275
.
21.
Frank
,
P. M.
, 1978,
Introduction to System Sensitivity Theory
,
Academic
,
New York
.
22.
Mallat
,
S.
, 1999,
A Wavelet Tour of Signal Processing
, 2nd ed.,
Academic
,
New York
.
23.
Walker
,
J.
, 1997, “
Fourier Analysis and Wavelet Analysis
,”
Not. Am. Math. Soc.
0002-9920,
44
(
6
), pp.
658
670
.
24.
Mallat
,
S.
, and
Hwang
,
W. L.
, 1992, “
Singularity Detection and Processing With Wavelets
,”
IEEE Trans. Inf. Theory
0018-9448,
38
(
2
), pp.
617
643
.
25.
Jackson
,
J. E.
, 1991,
A User’s Guide to Principle Components
,
Wiley
,
New York
.
26.
Deuflhard
,
P.
, 2004,
Newton Methods for Nonlinear Problems
,
Springer
,
New York
.
27.
Verhaegen
,
M.
, and
Verdult
,
V.
, 2007,
Filtering and System Identification
,
Cambridge University Press
,
Cambridge, England
.
28.
Thomaseth
,
K.
, and
Cobelli
,
C.
, 1999, “
Generalized Sensitivity Functions in Physiological System Identification
,”
Ann. Biomed. Eng.
0090-6964,
27
, pp.
607
616
.
29.
Walter
,
E.
, and
Pronzato
,
L.
, 1996, “
On the Identifiability and Distinguishability of Nonlinear Parametric Models
,”
Math. Comput. Simul.
0378-4754,
42
, pp.
125
134
.
30.
Addison
,
P. S.
, 2002,
The Illustrated Wavelet Transform Handbook
,
Institute of Physics Publishing
,
Bristol, PA
.
31.
Audoly
,
S.
,
Bellu
,
G.
,
D’Angio
,
L.
,
Saccomani
,
M. P.
, and
Cobelli
,
C.
, 2001, “
Global Identifiability of Nonlinear Models of Biological Systems
,”
IEEE Trans. Biomed. Eng.
0018-9294,
48
(
1
), pp.
55
65
.
32.
Wang
,
N.
,
Dayawansa
,
W. P.
, and
Martin
,
C. F.
, 1999, “
Van der Pol Oscillator Networks
,”
Proceedings of the 38th Conference on Decision and Control
, Phoenix, AZ, pp.
393
398
.
33.
Carson
,
E. R.
,
Cobelli
,
C.
, and
Finkelstein
,
L.
, 1983,
The Mathematical Modeling of Metabolic and Endocrine Systems
,
Wiley
,
New York
.
34.
Marr
,
D.
, 1982,
Vision
,
Freeman
,
San Francisco
.
35.
Loh
,
A.-P.
,
Annaswamy
,
A. M.
, and
Skantze
,
F. P.
, 1999, “
Adaptation in the Presence of a General Nonlinear Parameterization: An Error Model Approach
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
9
), pp.
1634
1652
.
You do not currently have access to this content.