The problem of stable bilateral teleoperation with position-error based force feedback in the presence of time-varying possibly unbounded communication delay is addressed. Two stabilization schemes are proposed that guarantee “independent of delay” stability of the teleoperator system. In particular, one of the schemes theoretically allows to achieve an arbitrary high force-reflection gain, which leads to better transparency without sacrificing the stability of the overall system. The stability analysis is based on the input-to-output stable small gain theorem for systems of functional-differential equations. Experimental results are presented, which demonstrate stable behavior of the telerobotic system with time-varying communication delay during contact with a rigid obstacle.

1.
Sheridan
,
T. B.
, 1989, “
Telerobotics
,”
Automatica
0005-1098,
25
(
4
), pp.
487
507
.
2.
Niemeyer
,
G.
, and
Slotine
,
J. -J. E.
, 1991, “
Stable Adaptive Teleoperation
,”
IEEE J. Ocean. Eng.
0364-9059,
16
(
1
), pp.
152
162
.
3.
Kim
,
W. S.
, 1992, “
Developments of New Force Reflecting Control Schemes and an Application to a Teleoperation Training Simulator
,”
Proceedings of the 1992 IEEE International Conference on Robotics and Automation
,
Nice, France
, pp.
1412
1419
.
4.
Eusebi
,
A.
, and
Melchiorri
,
C.
, 1998, “
Force Reflecting Telemanipulators With Time-Delay: Stability Analysis and Control Design
,”
IEEE Trans. Rob. Autom.
1042-296X,
14
, pp.
635
640
.
5.
Oboe
,
R.
, and
Fiorini
,
P.
, 1998, “
A Design and Control Environment for Internet-Based Teleoperation
,”
Int. J. Robot. Res.
0278-3649,
17
(
4
), pp.
433
449
.
6.
Anderson
,
R. J.
, and
Spong
,
M. W.
, 1989, “
Bilateral Control of Teleoperators With Time Delay
,”
IEEE Trans. Autom. Control
0018-9286,
34
(
5
), pp.
494
501
.
7.
Kim
,
W. S.
,
Hannaford
,
B.
, and
Bejczy
,
A. K.
, 1992, “
Force-Reflection and Shared Compliant Control in Operating Telemanipulators With Time Delay
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
, pp.
176
185
.
8.
Sheridan
,
T. B.
, 1993, “
Space Teleoperation Through Time Delay: Review and Prognosis
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
(
5
), pp.
592
606
.
9.
Arcara
,
P.
, and
Melchiorri
,
C.
, 2002, “
Control Schemes for Teleoperation With Time Delay: A Comparative Study
,”
Rob. Auton. Syst.
0921-8890,
38
(
1
), pp.
49
64
.
10.
Niemeyer
,
G.
, and
Slotine
,
J. -J. E.
, 1998, “
Towards Force Reflecting Teleoperation Over the Internet
,”
Proceedings of the International Conference on Robotics and Automation
,
Leuven, Belgium
, pp.
1909
1915
.
11.
Chopra
,
N.
,
Spong
,
M. W.
,
Hirche
,
S.
, and
Buss
,
M.
, 2003, “
Bilateral Teleoperation Over the Internet: The Time Varying Delay Problem
,”
Proceedings of the American Control Conference
,
Denver, CO
.
12.
Munir
,
S.
, and
Book
,
W. J.
, 2002, “
Internet-Based Teleoperation Using Wave Variables With Prediction
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
7
(
2
), pp.
124
133
.
13.
Munir
,
S.
, and
Book
,
W. J.
, 2003, “
Control Techniques and Programming Issues for Time Delayed Internet Based Teleoperation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
125
(
2
), pp.
205
214
.
14.
Polushin
,
I. G.
,
Tayebi
,
A.
, and
Marquez
,
H. J.
, 2005, “
Stabilization Scheme for Force Reflecting Teleoperation With Time-Varying Communication Delay Based on IOS Small Gain Theorem
,”
Proceedings of the 16th IFAC World Congress
,
Prague, Czech Republic
.
15.
Polushin
,
I. G.
,
Liu
,
P. X.
, and
Lung
,
C. -H.
, 2006, “
A Control Scheme for Stable Force-Reflecting Teleoperation Over IP Networks
,”
IEEE Trans. Syst. Man Cybern., Part B: Cybern.
,
36
(
4
), pp.
930
939
.
16.
Polushin
,
I. G.
,
Marquez
,
H. J.
,
Tayebi
,
A.
, and
Liu
,
P. X.
, 2009, “
A Multichannel IOS Small Gain Theorem for Systems With Multiple Time-Varying Communication Delays
,”
IEEE Trans. Autom. Control
0018-9286,
54
(
2
), pp.
404
409
.
17.
Niemeyer
,
G.
, and
Slotine
,
J. -J. E.
, 2004, “
Telemanipulation With Time Delays
,”
Int. J. Robot. Res.
0278-3649,
23
(
9
), pp.
873
890
.
18.
Lee
,
D.
, and
Spong
,
M. W.
, 2006, “
Passive Bilateral Control of Teleoperators Under Constant Time Delay
,”
IEEE Trans. Robot.
,
22
(
2
), pp.
269
281
.
19.
Chopra
,
N.
,
Spong
,
M. W.
, and
Lozano
,
R.
, 2004, “
Adaptive Coordination Control of Bilateral Teleoperators With Time Delay
,”
Proceedings of the 43rd IEEE Conference on Decision and Control
,
Atlantis, Paradise Island, Bahamas
.
20.
Spong
,
M. W.
, 1996, “
Motion Control of Robot Manipulators
,”
Handbook of Control
,
W.
Levine
, ed.,
CRC
,
Boca Raton, FL
, pp.
1339
1350
.
21.
Polushin
,
I. G.
,
Fradkov
,
A. L.
, and
Hill
,
D. J.
, 1998, “
Strict Quasipassivity and Ultimate Boundedness for Nonlinear Control Systems
,”
Proceedings of the Fourth IFAC Symposium on “Nonlinear Control Systems” NOLCOS‘98
,
Enschede, The Netherlands
, pp.
527
532
.
22.
Sontag
,
E. D.
, 2000, “
The ISS Philosophy as a Unifying Framework for Stability-Like Behaviour
,”
Nonlinear Control in the Year 2000: Lecture Notes in Control and Information Sciences
,
A.
Isidori
,
F.
Lamnabhi-Lagarrigue
, and
W.
Respondek
, eds.,
Springer-Verlag
,
Berlin
, Vol.
2
, pp.
443
468
.
23.
Teel
,
A. R.
, 1998, “
Connections Between Razumikhin-Type Theorems and the ISS Nonlinear Small Gain Theorem
,”
IEEE Trans. Autom. Control
0018-9286,
43
(
7
), pp.
960
964
.
24.
Zames
,
G.
, 1966, “
On the Input-Output Stability of Time-Varying Nonlinear Feedback Systems. Part I: Conditions Derived Using Concepts of Loop Gain, Conicity, and Positivity
,”
IEEE Trans. Autom. Control
0018-9286,
11
(
2
), pp.
228
238
.
25.
Desoer
,
C.
, and
Vidyasagar
,
M.
, 1975,
Feedback Systems: Input-Output Properties
,
Academic
,
New York
.
26.
van der Schaft
,
A.
, 1999, “
L2-Gain and Passivity Techniques in Nonlinear Control
,” 2nd ed.,
Communications and Control Engineering
,
Springer-Verlag
,
London
.
27.
Jiang
,
Z. -P.
,
Teel
,
A. R.
, and
Praly
,
L.
, 1994, “
Small-Gain Theorem for ISS Systems and Applications
,”
Math. Control, Signals, Syst.
0932-4194,
7
, pp.
95
120
.
28.
Teel
,
A. R.
, 1996, “
A Nonlinear Small Gain Theorem for the Analysis of Control Systems With Saturation
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
9
), pp.
1256
1270
.
29.
Polushin
,
I. G.
,
Tayebi
,
A.
, and
Marquez
,
H. J.
, 2006, “
Control Schemes for Stable Teleoperation With Communication Delay Based on IOS Small Gain Theorem
,”
Automatica
0005-1098,
42
(
6
), pp.
905
915
.
30.
Sontag
,
E. D.
, and
Wang
,
Y.
, 1995, “
On Characterizations of the Input-to-State Stability Property
,”
Syst. Control Lett.
0167-6911,
24
, pp.
351
359
.
31.
Angeli
,
D.
, 1999, “
Input-to-State Stability of PD-Controlled Robotic Systems
,”
Automatica
0005-1098,
35
, pp.
1285
1290
.
32.
Massie
,
T.
, and
Salisbury
,
J. K.
, 1994, “
The Phantom Haptic Interface: A Device for Probing Virtual Objects
,”
Proceedings of the ASME Winter Annual Meeting
,
Chicago, IL
.
33.
Cavusoglu
,
M. C.
,
Feygin
,
D.
, and
Tendick
,
F.
, 2002, “A Critical Study of the Mechanical and Electrical Properties of the Phantom Haptic Interface and Improvements for High Performance Control,” Presence: Teleoperators and Virtual Environments, 11(6), pp. 555–568.
34.
Hannaford
,
B.
, 1989, “
Stability and Performance Tradeoffs in Bi-Lateral Telemanipulation
,”
Proceedings of the 1989 IEEE International Conference on Robotics and Automation
, pp.
1764
1767
.
35.
Lawrence
,
D. A.
, 1993, “
Stability and Transparency in Bilateral Teleoperation
,”
IEEE Trans. Rob. Autom.
1042-296X,
9
, pp.
624
637
.
You do not currently have access to this content.