The authors present a model-based analysis of a position-velocity-acceleration-controlled pneumatic actuator that indicates that supplementing the pneumatic actuator with mechanical damping can significantly increase the gain margin, tracking accuracy, and disturbance rejection of a closed-loop-controlled pneumatic servoactuator. In order to validate the model-based analysis and purported performance and stability benefits provided by supplemental damping, experiments were performed on a single-degree-of-freedom pneumatic servosystem. Measurements conducted on the experimental setup, which validate the respective improvements in stability margin, tracking accuracy, and disturbance rejection, are described.
Issue Section:
Research Papers
1.
Shearer
, J. L.
, 1956, “Study of Pneumatic Processes in the Continuous Control of Motion With Compressed Air—II
,” Trans. ASME
0097-6822, 78
, pp. 243
–249
.2.
Mannetje
, J. J.
, 1981, “Pneumatic Servo Design Method Improves System Bandwidth Twenty-Fold
,” Control Eng.
0010-8049, 28
(6
), pp. 79
–83
.3.
Liu
, S.
, and Bobrow
, J. E.
, 1988, “An Analysis of a Pneumatic Servo System and Its Application to a Computer-Controlled Robot
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 110
(3
), pp. 228
–235
.4.
Kimura
, T.
, Hara
, S.
, Fujita
, T.
, and Kagawa
, T.
, 1997, “Feedback Linearization for Pneumatic Actuator Systems With Static Friction
,” Control Eng. Pract.
0967-0661, 5
(10
), pp. 1385
–1394
.5.
Surgenor
, B. W.
, and Vaughan
, N. D.
, 1997, “Continuous Sliding Mode Control of a Pneumatic Actuator
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 119
(3
), pp. 578
–581
.6.
Bobrow
, J.
, and McDonell
, B.
, 1998, “Modeling, Identification, and Control of a Pneumatically Actuated, Force Controllable Robot
,” IEEE Trans. Rob. Autom.
1042-296X, 14
(5
), pp. 732
–742
.7.
Wang
, J.
, Pu
, J.
, and Moore
, P.
, 1999, “A Practical Control Strategy for Servo-Pneumatic Actuator Systems
,” Control Eng. Pract.
0967-0661, 7
, pp. 1483
–1488
.8.
Richer
, E.
, and Hurmuzlu
, Y.
, 2000, “A High Performance Pneumatic Force Actuator System: Part II—Nonlinear Control Design
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 122
(3
), pp. 426
–434
.9.
Wang
, J.
, Wang
, D. J. D.
, Moore
, P. R.
, and Pu
, J.
, 2001, “Modelling Study, Analysis and Robust Servocontrol of Pneumatic Cylinder Actuator Systems
,” IEE Proc.: Control Theory Appl.
1350-2379, 148
(1
), pp. 35
–42
.10.
Al-Dakkan
, K.
, Barth
, E. J.
, and Goldfarb
, M.
, 2006, “Dynamic Constraint Based Energy Saving Control of Pneumatic Servo Systems
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 128
(3
), pp. 655
–662
.11.
Bone
, G. M.
, and Ning
, S.
, 2007, “Experimental Comparison of Position Tracking Control Algorithms for Pneumatic Cylinder Actuators
,” IEEE/ASME Trans. Mechatron.
1083-4435, 12
(5
), pp. 557
–561
.12.
Shen
, X.
, and Goldfarb
, M.
, 2007, “Energy Saving in Pneumatic Servo Control Utilizing Interchamber Cross-Flow
,” ASME J. Dyn. Syst., Meas., Control
0022-0434, 129
(3
), pp. 303
–310
.13.
Rao
, Z.
, and Bone
, G. M.
, 2008, “Nonlinear Modeling and Control of Servo Pneumatic Actuators
,” IEEE Trans. Control Syst. Technol.
1063-6536, 16
(3
), pp. 562
–569
.14.
Vaughan
, D. R.
, 1965, “Hot-Gas Actuators: Some Limits on the Response Speed
,” ASME J. Basic Eng.
0021-9223, 87
(1
), pp. 113
–119
.15.
Huff
, J. F.
, 1965, “Precision Motion Control Device
,” U.S. Patent No. 3,176,801.16.
Crosby
, M. J.
, 1985, “Hydropneumatic Drive Apparatus
,” U.S. Patent No. 4,528,894.17.
McCormick
, J. F.
, 1995, “High Speed Pneumatic Servo Actuator With Hydraulic Damper
,” U.S. Patent No. 5,458,047.18.
Klute
, G. K.
, Czerniecki
, J. M.
, and Hannaford
, B.
, 1999, “McKibben Artificial Muscles: Pneumatic Actuators With Biomechanical Intelligence
,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics
, pp. 221
–226
.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.