This paper presents a dynamic analysis method for robotic integration of tooling systems. This development is motivated by the fact that many modern robotic automation tasks require large and heavy tooling systems. Yet, the integration of these tooling systems is usually done only considering the geometric constraints and weights without resorting to dynamic analysis. To resolve this problem, the equations of motion of a robot with inclusion of a tooling system are derived using the Lagrangian formulation. Three performance indices are introduced to evaluate the influence of the tooling system on the overall dynamics. The first index measures the energy consumption due to the tooling system’s motion, the second index evaluates the influence of the tooling system on the fundamental frequency, and the third one is the dynamic manipulability ellipsoid to measure the acceleration capability of the tool tip. Simulation studies are carried out to provide guidelines for the design of tooling systems. To demonstrate its effectiveness, the proposed method is applied to facilitate the tooling integration used in the robotic riveting for aerospace assembly.

1.
Siciliano
,
B.
, and
Khatib
,
O.
, 2008,
Springer Handbook of Robotics
,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
229
244
and
963
986
.
2.
Parks
,
T. R.
, and
Pak
,
H. A.
, 1991, “
Effect of Payload on the Dynamics of a Flexible Manipulator—Modeling for Control
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
113
(
3
), pp.
409
418
.
3.
Li
,
D.
,
Zu
,
J. W.
, and
Goldenburg
,
A. A.
, 1998, “
Dynamic Modeling and Mode Analysis of Flexible-Link, Flexible-Joint Robots
,”
Mech. Mach. Theory
0094-114X,
33
(
7
), pp.
1031
1044
.
4.
Asada
,
H.
, 1983, “
A Geometrical Representation of Manipulator Dynamics and Its Application to Arm Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
105
(
3
), pp.
131
135
.
5.
Yoshikawa
,
T.
, 1985, “
Dynamic Manipulability of Robot Manipulators
,”
J. Rob. Syst.
0741-2223,
2
(
1
), pp.
113
124
.
6.
Chiacchio
,
P.
, 2000, “
A New Dynamic Manipulability Ellipsoid for Redundant Manipulators
,”
Robotica
0263-5747,
18
(
4
), pp.
381
387
.
7.
Graettinger
,
T. J.
, and
Krogh
,
B. H.
, 1988, “
The Acceleration Radius: A Global Performance Measure for Robotic Manipulators
,”
IEEE J. Rob. Autom.
0882-4967,
4
(
1
), pp.
60
69
.
8.
Koeppe
,
R.
, and
Yoshikawa
,
T.
, 1997, “
Dynamic Manipulability Analysis of Compliant Motion
,”
Proceedings of IEEE International Conference on Intelligent Robots and Systems
, pp.
1472
1478
.
9.
Bowling
,
A. P.
, and
Kim
,
C.
, 2006, “
Velocity Effects on Robotic Manipulator Dynamic Performance
,”
ASME J. Mech. Des.
0161-8458,
128
(
6
), pp.
1236
1245
.
10.
Wang
,
L. T.
, and
Ravani
,
B.
, 1988, “
Dynamic Load Carrying Capacity of Mechanical Manipulators—Part I: Problem Formulation
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
110
(
1
), pp.
46
52
.
11.
Kurazume
,
R.
, and
Hasegawa
,
T.
, 2006, “
A New Index of Serial-Link Manipulator Performance Combining Dynamic Manipulability and Manipulating Force Ellipsoids
,”
IEEE Trans. Rob. Autom.
1042-296X,
22
(
5
), pp.
1022
1028
.
12.
Poznyak
,
A. S.
, 2008,
Advanced Mathematical Tools for Automatic Control Engineers, Volume 1: Deterministic Techniques
,
Elsevier
,
Amsterdam, The Netherlands
, p.
132
.
13.
Meirovitch
,
L.
, 1997,
Principles and Techniques of Vibrations
,
Prentice-Hall
,
Upper Saddle River, NJ
, pp.
237
243
.
14.
Campbell
,
F. C.
, 2006,
Manufacturing Technology for Aerospace Structural Materials
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
495
537
.
15.
Cherng
,
J. G.
,
Eksioglu
,
M.
, and
Kizilaslan
,
K.
, 2009, “
Vibration Reduction of Pneumatic Percussive Rivet Tools: Mechanical and Ergonomic Re-Design Approaches
,”
Appl. Ergon
0003-6870,
40
(
2
), pp.
256
266
.
16.
Wang
,
B.
,
Hao
,
C.
,
Zhang
,
J.
, and
Zhang
,
H.
, 2006, “
A New Self-Piercing Riveting Process and Strength Evaluation
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
580
587
.
17.
Li
,
Y.
,
Xi
,
F.
, and
Behdinan
,
K.
, 2010, “
Dynamic Modeling and Simulation of Percussive Impact Riveting for Robotic Automation
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
5
(
2
), p.
021011
.
You do not currently have access to this content.