The high energy consumption of market-ready active suspension systems is the limiting factor in the competition with semi-active devices. The variable geometry active suspension is an alternative with a significantly lower power consumption. However, previous designs suffer from packaging problems, nonlinear stiffness characteristics, and failsafe issues. This paper discusses the feasibility of a recently presented, new design, variable geometry actuator, which has a fixed spring and constant stiffness. An actuator model is derived that includes the electric motor and friction characteristics. Using this model, a cascaded controller is developed and the steady-state and dynamic properties are evaluated. The simulation results are validated with prototype tests. The results show a good correspondence between simulations and measurements. Furthermore, a 10 Hz bandwidth can be easily obtained. It is concluded that the electromechanical low-power active suspension design is feasible and that the model gives a fairly accurate representation of both the steady-state and dynamic characteristics of the prototype.

1.
Muijderman
,
J. H. E. A.
, 1997, “
Flexible Objective Controllers for Semi-Active Suspensions With Preview
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
2.
Hrovat
,
D.
, 1997, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
0005-1098,
33
(
10
), pp.
1781
1817
.
3.
Han
,
S. S.
,
Choi
,
S. B.
,
Park
,
J. S.
,
Kim
,
J. H.
, and
Choi
,
H. J.
, 2003, “
Robust Sliding Mode Control of an Electrorheological Suspension System With Parameter Perturbations
,”
Int. J. Veh. Des.
0143-3369,
33
(
1/2/3
), pp.
279
295
.
4.
Fischer
,
D.
, and
Isermann
,
R.
, 2004, “
Mechatronic Semi-Active and Active Vehicle Suspensions
,”
Control Eng. Pract.
0967-0661,
12
, pp.
1353
1367
.
5.
Ballo
,
I.
, 2001, “
Properties of Air Spring as a Force Generator in Active Vibration Control Systems
,”
Veh. Syst. Dyn.
0042-3114,
35
(
1
), pp.
67
72
.
6.
Soliman
,
A. M. A.
, and
Crolla
,
D. A.
, 2001, “
Limited Bandwidth Active Suspension Employing Wheel Base Preview
,” SAE World Congress, Paper No. 2001-01-1063.
7.
Alleyne
,
A.
, and
Liu
,
R.
, 2000, “
A Simplified Approach to Force Control for Electro-Hydraulic Systems
,”
Control Eng. Pract.
0967-0661,
8
, pp.
1347
1356
.
8.
Heißing
,
B.
, and
Ersoy
,
M.
, 2007,
Fahrwerkhandbuch
,
Friedrich Vieweg & Sohn Verlag
,
Wiesbaden
pp.
533
536
.
9.
Encică
,
L.
, 2008, “
Space-Mapping Optimization Applied to the Design of a Novel Electromagnetic Actuator for Active Suspension
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
11.
Nakano
,
K.
, and
Suda
,
Y.
, 2004, “
Combined Type Self-Powered Active Vibration Control of Truck Cabins
,”
Veh. Syst. Dyn.
0042-3114,
41
(
6
), pp.
449
473
.
12.
van der Knaap
,
A. C. M.
, 1989, “
Design of a Low Power Anti-Roll/Pitch System for a Passenger Car
,” MS thesis, Delft University of Technology.
13.
Venhovens
,
P. J. Th.
, and
van der Knaap
,
A. C. M.
, 1995, “
Delft Active Suspension (DAS). Background Theory and Physical Realization
,”
Smart Vehicles
,
J. P.
Pauwelussen
and
H. B.
Pacejka
, eds.,
Taylor & Francis
,
London
, pp.
139
165
.
14.
van der Knaap
,
A. C. M.
,
Venhovens
,
P. J. Th.
, and
Pacejka
,
H. B.
, 1994, “
Evaluation and Practical Implementation of a Low Power Attitude and Vibration Control System
,”
International Symposium on Advanced Vehicle Control (AVEC)
.
15.
Sharp
,
R. S.
, 1998, “
Variable Geometry Active Suspension for Cars
,”
Comput. Control Eng. J.
0956-3385,
9
(
5
), pp.
217
222
.
16.
Watanabe
,
Y.
, and
Sharp
,
R. S.
, 1999, “
Mechanical and Control Design of a Variable Geometry Active Suspension System
,”
Veh. Syst. Dyn.
0042-3114,
32
, pp.
217
235
.
17.
van der Knaap
,
A. C. M.
,
Teerhuis
,
A. P.
,
Tinsel
,
R. B. G.
, and
Verschuren
,
R. M. A. F.
, 2008, “
Active Suspension Assembly for a Vehicle
,” International Patent No. WO 2008/049845.
18.
Evers
,
W. -J.
,
Besselink
,
I. J. M.
,
van der Knaap
,
A. C. M.
, and
Nijmeijer
,
H.
, 2008, “
Analysis of a Variable Geometry Active Suspension
,”
International Symposium on Advanced Vehicle Control
, pp.
350
355
.
19.
Evers
,
W. -J.
,
Besselink
,
I. J. M.
,
van der Knaap
,
A. C. M.
, and
Nijmeijer
,
H.
, 2008, “
Modeling, Analysis and Control of a Variable Geometry Actuator
,”
IEEE Intelligent Vehicles Symposium
, pp.
251
256
.
20.
Evers
,
W. -J.
,
Besselink
,
I. J. M.
,
Teerhuis
,
A. P.
, and
Nijmeijer
,
H.
, 2010, “
On the Achievable Performance Using Variable Geometry Active Secondary Suspension Systems in Commercial Vehicles
,”
Veh. Syst. Dyn.
0042-3114, accepted for publication.
21.
Evers
,
W. -J.
, 2010, “
Improving Driver Comfort in Commercial Vehicles: Modeling and Control of a Low-Power Active Cabin Suspension System
,” Ph.D. thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.
22.
Hanselman
,
D. C.
, 2003,
Brushless Permanent Magnet Motor Design
, 2nd ed.,
Writers’ Collective
,
Cranston, RI
.
23.
Lomonova
,
E. A.
, 1997,
A System Look at Electromechanical Actuation for Primary Flight Control
, Vol.
3
(2),
Delft University Press
.
24.
Armstrong-Hélouvry
,
B.
,
Dupont
,
P.
, and
Canudas De Wit
,
C.
, 1994, “
A Survey of Models, Analysis Tools and Compensation Methods for the Control of Machines With Friction
,”
Automatica
0005-1098,
30
(
7
), pp.
1083
1138
.
25.
Canudas De Wit
,
C.
,
Olsson
,
K.
,
Aström
,
K. J.
, and
Lischinsky
,
P.
, 1995, “
A New Model for Control of Systems With Friction
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
419
425
.
26.
Uffelmann
,
F.
, and
Wiesmeijer
,
A.
, 1992, “
Active Cab Suspension for Trucks: Technical Realization and Achievable Ride Comfort
,”
24th FISITA Congress
, London, England, pp
75
85
.
You do not currently have access to this content.