This paper presents an analysis of a nonlinear (piecewise linear) dynamical model governing steady operation of a flat belt drive using a physically motivated elastic/perfectly plastic (EPP) friction law. The EPP law models frictional contact as an elastic spring in series with an ideal Coulomb damper. As such, the friction magnitude depends on the stretch of the elastic belt and is integral to the solution approach. Application of the extended Hamilton’s principle, accounting for nonconservative work due to friction and mass transport at the boundaries, yields a set of piecewise linear equations of motion and accompanying boundary conditions. Equilibrium solutions to the gyroscopic boundary value problem are determined in closed form together with an expression for the minimum value of the EPP spring constant needed to transmit a given torque. Unlike equilibrium solutions obtained from a strict Coulomb law, these solutions omit adhesion zones. This finding may be important for interpreting belt drive test-stand results and the experimentally determined friction coefficients obtained from them. A local stability analysis demonstrates that the nonlinear equilibrium solutions found are stable to local perturbations. The steady dynamical operation of the drive is also studied using an in-house corotational finite element code. Comparisons of the finite-element solutions with those obtained analytically show excellent agreement.

1.
Firbank
,
T.
, 1970, “
Mechanics of the Belt Drive
,”
Int. J. Mech. Sci.
0020-7403,
12
, pp.
1053
1063
.
2.
Fawcett
,
J.
, 1981, “
Chain and Belt Drives—A Review
,”
Shock Vib. Dig.
0583-1024,
13
(
5
), pp.
5
12
.
3.
Johnson
,
K.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
New York
.
4.
Bechtel
,
S.
,
Vohra
,
S.
,
Jacob
,
K.
, and
Carlson
,
C.
, 2000, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
0021-8936,
67
, pp.
197
206
.
5.
Rubin
,
M.
, 2000, “
An Exact Solution for Steady Motion of an Extensible Belt in Multipulley Belt Drive Systems
,”
ASME J. Mech. Des.
0161-8458,
122
, pp.
311
316
.
6.
Oden
,
J.
, and
Martins
,
J.
, 1985, “
Models and Computational Methods for Dynamic Friction Phenomena
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
52
, pp.
527
634
.
7.
Makris
,
N.
, and
Constantinou
,
M.
, 1991, “
Analysis of Motion Resisted by Friction. II. Velocity-Dependent Friction
,”
Mech. Based Des. Struct. Mach.
1539-7734,
19
(
4
), pp.
501
526
.
8.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
, 2002, “
Analysis of Belt-Drive Mechanics Using a Creeprate-Dependent Friction Law
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
763
771
.
9.
Ferri
,
A.
, 1995, “
Friction Damping and Isolation Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
117
, pp.
196
205
.
10.
Menq
,
C.
,
Bielak
,
J.
, and
Griffin
,
J.
, 1986, “
The Influence of Microslip on Vibratory Response, Part I: A New Microslip Model
,”
J. Sound Vib.
0022-460X,
107
(
2
), pp.
279
293
.
11.
Gerbert
,
G.
, and
Sorge
,
F.
, 2002, “
Full Sliding Adhesive-Like Contact of v-Belts
,”
ASME J. Mech. Des.
0161-8458,
124
, pp.
706
712
.
12.
Kong
,
L.
, and
Parker
,
R. G.
, 2006, “
Mechanics and Sliding Friction in Belt Drives With Pulley Grooves
,”
ASME J. Mech. Des.
0161-8458,
128
, pp.
494
502
.
13.
Childs
,
T.
, and
Parker
,
I.
, 1989, “
Power transmission by flat, V and timing belts
,”
Tribological Design of Machine Elements
, p.
133
.
14.
Gerbert
,
G.
, 1996, “
Belt Slip—A Unified Approach
,”
ASME J. Mech. Des.
0161-8458,
118
(
3
), pp.
432
438
.
15.
Alciatore
,
D.
, and
Traver
,
A.
, 1995, “
Multipulley Belt Drive Mechanics: Creep Theory vs Shear Theory
,”
ASME J. Mech. Des.
0161-8458,
117
, pp.
506
511
.
16.
Kong
,
L.
, and
Parker
,
R. G.
, 2005, “
Microslip Friction In at Belt Drives
,”
J. Mech. Eng. Sci.
0022-2542,
219
, pp.
1097
1106
.
17.
Tonoli
,
A.
,
Amati
,
N.
, and
Zenerino
,
E.
, 2006, “
Dynamic Modeling of Belt Drive Systems: Effects of the Shear Deformations
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
555
567
.
18.
Sorge
,
F.
, 2008, “
A Note on the Shear Influence on Belt Drive Mechanics
,”
ASME J. Mech. Des.
0161-8458,
130
, p.
024502
.
19.
Leamy
,
M. J.
, 2005, “
On a Perturbation Method for the Analysis of Unsteady Belt-Drive Operation
,”
ASME J. Appl. Mech.
0021-8936,
72
, pp.
570
580
.
20.
Benjamin
,
T.
, 1961, “Dynamics of a System of Articulated Pipes Conveying Fluid. I. Theory,” Proc. R. Soc. London, Ser. A, pp. 457–486.
21.
McIver
,
D.
, 1973, “
Hamilton’s Principle for Systems of Changing Mass
,”
J. Eng. Math.
0022-0833,
7
(
3
), pp.
249
261
.
22.
Hwang
,
S.
, and
Perkins
,
N.
, 1992, “
Supercritical Stability of an Axially Moving Beam Part I: Model and Equilibrium Analysis
,”
J. Sound Vib.
0022-460X,
154
(
3
), pp.
381
396
.
23.
Lee
,
U.
, and
Jang
,
I.
, 2007, “
On the Boundary Conditions for Axially Moving Beams
,”
J. Sound Vib.
0022-460X,
306
(
3–5
), pp.
675
690
.
24.
Kim
,
D.
, 2009, “
Dynamic Modeling of Belt Drives Using the Elastic/Perfectly-Plastic Friction Law
,” MS thesis, Georgia Institute of Technology, Atlanta, GA.
25.
Meirovitch
,
L.
, 1974, “
A New Method of Solution of the Eigenvalue Problem for Gyroscopic Systems
,”
AIAA J.
0001-1452,
12
, pp.
1337
1342
.
26.
Meirovitch
,
L.
, 1975, “
A Modal Analysis for the Response of Linear Gyroscopic Systems
,”
ASME J. Appl. Mech.
0021-8936,
42
(
2
), pp.
446
450
.
27.
Wickert
,
J.
, 1992, “
Non-Linear Vibration of a Traveling Tensioned Beam
,”
Int. J. Non-Linear Mech.
0020-7462,
27
(
3
), pp.
503
517
.
28.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
, 2002, “
Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
, pp.
575
581
.
You do not currently have access to this content.