This paper investigates the design of spacecraft attitude stabilization controllers that are robust against actuator faults and external disturbances. A nominal controller is developed initially, using the adaptive backstepping technique, to stabilize asymptotically the spacecraft attitude when the actuators are fault-free. Additive faults and the partial loss of actuator effectiveness are considered simultaneously and an auxiliary controller is designed in addition to the nominal controller to compensate for the system faults. This auxiliary controller does not use any fault detection and isolation mechanism to detect, separate, and identify the actuator faults online. The attitude orientation and angular velocity of the closed-loop system asymptotically converge to zero despite actuator faults providing the nominal attitude system is asymptotically stable. Numerical simulation results are presented that demonstrate the closed-loop performance benefits of the proposed control law and illustrate its robustness to external disturbances and actuator faults.

References

1.
Zhang
,
Y. M.
, and
Jiang
,
J.
, 2008, “
Bibliographical Review on Reconfigurable Fault-Tolerant Control Systems
,”
Annu. Rev. Control
,
32
(
2
), pp.
229
252
.
2.
Pujol
,
G.
, 2009, “
Reliable H Control of a Class of Uncertain Interconnected Systems: An LMI Approach
,”
Int. J. Syst. Sci.
,
40
(
60
), pp.
649
657
.
3.
Chen
,
S.
,
Tao
,
G.
, and
Joshi
,
S. M.
, 2004, “
Adaptive Actuator Failure Compensation Designs for Linear Systems
,”
Int. J. Control Autom. Syst.
,
2
(
1
), pp.
1
14
.
4.
Benosman
,
M.
, and
Lum
,
K. Y.
, 2009, “
Application of Absolute Stability Theory to Robust Control Against Loss of Actuator Effectiveness
,”
IET Control Theory Appl.
,
3
(
6
), pp.
772
788
.
5.
Cieslak
,
J.
,
Henry
,
D.
,
Zolghadri
,
A.
, and
Goupil
,
P.
, 2008, “
Development of an Active Fault-Tolerant Flight Control Strategy
,”
J. Guid. Control Dyn.
,
31
(
1
), pp.
135
147
.
6.
Yang
,
G. H.
, and
Ye
,
D.
, 2008, “
Adaptive Fault-Tolerant H-Infinity Control Against Sensor Failures
,”
IET Control Theory Appl.
,
2
(
2
), pp.
95
107
.
7.
Alwi
,
H.
,
Edwards
,
C.
,
Stroosma
,
O.
, and
Mulder
,
J. A.
, 2008, “
Fault Tolerant Sliding Mode Control Design With Piloted Simulator Evaluation
,”
J. Guid. Control Dyn.
,
31
(
5
), pp.
1186
1201
.
8.
Corradini
,
A. L.
,
Orlando
,
G.
, and
Parlangeli
,
G.
, 2005, “
A Fault Tolerant Sliding Mode Controller for Accommodating Actuator Failures
,”
44th IEEE Conference on Decision Control/European Control Conference (CCD-ECC)
,
Seville, Spain
, pp.
3091
3096
.
9.
Ducard
,
G.
, 2009,
Fault-Tolerant Flight Control and Guidance Systems
,
Springer
,
New York
.
10.
Zhang
,
X. D.
,
Parisini
,
T.
, and
Polycarpou
,
M. M.
, 2004, “
Adaptive Fault-Tolerant Control of Nonlinear Uncertain Systems: An Information-Based Diagnostic Approach
,”
IEEE Trans. Autom. Control
,
49
(
8
), pp.
1259
1274
.
11.
Kobayashi
,
Y.
,
Ikeda
,
M.
, and
Fujisaki
,
Y.
, 2007, “
Stability of Large Space Structures Preserved Under Failures of Local Controllers
,”
IEEE Trans. Autom. Control
,
52
(
2
), pp.
318
322
.
12.
Varma
,
S.
, and
Kumar
,
K. D.
, 2010, “
Fault Tolerant Satellite Attitude Control Using Solar Radiation Pressure Based on Nonlinear Adaptive Sliding Mode
,”
Acta Astronaut.
,
66
(
3–4
), pp.
486
500
.
13.
Jin
,
J.
,
Ko
,
S.
, and
Ryoo
,
C. K.
, 2008, “
Fault Tolerant Control for Satellites With Four Reaction Wheels
,”
Control Eng. Pract.
,
16
(
10
), pp.
1250
1258
.
14.
Cai
,
W. C.
,
Liao
,
X. H.
, and
Song
,
Y. D.
, 2008, “
Indirect Robust Adaptive Fault-Tolerant Control for Attitude Tracking of Spacecraft
,”
J. Guid. Control Dyn.
,
31
(
5
), pp.
1456
1463
.
15.
Jiang
,
Y.
, and
Hu
,
Q.
, 2010, “
Adaptive Backstepping Fault-Tolerant Control for Flexible Spacecraft With Unknown Bounded Disturbances and Actuator Failures
,”
ISA Trans.
,
49
(
1
), pp.
57
69
.
16.
Jiang
,
T.
, and
Khorasani
,
K.
, 2007, “
A Fault Detection, Isolation and Reconstruction Strategy for a Satellite’s Attitude Control Subsystem With Redundant Reaction Wheels
,”
IEEE International Conference on Systems, Man and Cybernetics
,
Montreal, Cook Islands
, pp.
1644
1650
.
17.
Liang
,
J. J.
,
Dong
,
C. Y.
, and
Wang
,
Q.
, 2008, “
A Fault-Tolerant Attitude Control System for a Satellite Based on Fuzzy Global Sliding Mode Control Algorithm—Art. No. 712827
,”
Seventh International Symposium on Instrumentation and Control Technology
,
Beijing, Peoples Republic of China
, pp.
12827
12827
.
18.
Hou
,
Q.
,
Cheng
,
Y. H.
,
Lu
,
N. Y.
, and
Jiang
,
B.
, 2008, “
Study on FDD and FTC of Satellite Attitude Control System Based on the Effectiveness Factor
,”
Second International Symposium on Systems and Control in Aerospace and Astronautics
,
Shenzhen, Peoples Republic of China
, pp.
1096
1101
.
19.
Ye
,
D.
, and
Hong
,
Y. G.
, 2006, “
Adaptive Fault-Tolerant Tracking Control against Actuator Faults With Application to Flight Control
,”
IEEE Trans. Control Syst. Technol.
,
14
(
6
), pp.
1088
1096
.
20.
Ding
,
S. H.
, and
Li
,
S. H.
, 2009, “
Stabilization of the Attitude of a Rigid Spacecraft With External Disturbances Using Finite-Time Control Techniques
,”
Aerosp. Sci. Technol.
,
13
(
4–5
), pp.
256
265
.
21.
Zou
,
A. M.
, and
Kumar
,
K. D.
, 2010, “
Adaptive Attitude Control of Spacecraft Without Velocity Measurements Using Chebyshev Neural Network
,”
Acta Astronaut.
,
66
(
5–6
), pp.
769
779
.
22.
Tsiotras
,
P.
, 1996, “
Stabilization and Optimality Results for the Attitude Control Problem
,”
J. Guid. Control Dyn.
,
19
(
4
), pp.
772
779
.
23.
Kokotovic
,
P.
, and
Arcak
,
M.
, 2001, “
Constructive Nonlinear Control: A Historical Perspective
,”
Automatica
,
37
(
5
), pp.
637
662
.
24.
Krstic
,
M.
,
Kanellakopoulos
,
I.
, and
Kokotovic
,
P. V.
, 1995,
Nonlinear and Adaptive Control Design
,
Wiley
,
NewYork
.
25.
Hu
,
Q. L.
, 2008, “
Sliding Mode Maneuvering Control and Active Vibration Damping of Three-Axis Stabilized Flexible Spacecraft With Actuator Dynamics
,”
Nonlinear Dyn.
,
52
(
3
), pp.
227
248
.
26.
Di Gennaro
,
S.
, 2003, “
Output Stabilization of Flexible Spacecraft With Active Vibration Suppression
,”
IEEE Trans. Aerosp. Electron. Syst.
,
39
(
3
), pp.
747
759
.
27.
Chen
,
W.
, and
Saif
,
M.
, 2007, “
Observer-Based Fault Diagnosis of Satellite Systems Subject to Time-Varying Thruster Faults
,”
J. Dyn. Syst. Meas. Control-Trans. ASME
,
129
(
3
), pp.
352
356
.
You do not currently have access to this content.